The Isocohomological Property

Bobby Ramsey

Department of Mathematical Sciences IUPUI

March 26, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Group Cohomology

Suppose G is a finitely generated discrete group.

•
$$C^n(G) = \{\phi : G^n \to \mathbb{C}\}$$

• $d : C^n(G) \to C^{n+1}(G)$

$$(d\phi)(g_0,g_1,\ldots,g_n)=\sum_{i=0}^n(-1)^i\phi(g_0,g_1,\ldots,\widehat{g_i},\ldots,g_n)$$

$$0 \to C^0(G) \to C^1(G) \to \dots$$

A usual cochain complex for calculating group cohomology, $H^*(G)$.

Accounting for Growth

Endow G with a word-length function ℓ_G .

• $\phi \in PC^n(G) \subset C^n(G)$ if there is a polynomial P such that

 $|\phi(g_1,\ldots,g_n)| \leq P(\ell_G(g_1) + \ell_G(g_2) + \ldots + \ell_G(g_n))$

- $PC^*(G)$ forms a subcomplex of $C^*(G)$.
- $HP^n(G)$, the polynomial cohomology of G.
- PC*(G) → C*(G) induces a comparison map HP*(G) → H*(G).
- For many groups this map is an isomorphism.

With Coefficients

For a $\mathbb{C}G$ -module V: • $H^*(G; V) = \operatorname{Ext}_{\mathbb{C}G}^*(\mathbb{C}, V).$ • $0 \leftarrow \mathbb{C} \leftarrow P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \dots$ • $0 \to \operatorname{Hom}_{\mathbb{C}G}(P_0, V) \to \operatorname{Hom}_{\mathbb{C}G}(P_1, V) \to \operatorname{Hom}_{\mathbb{C}G}(P_2, V) \to \dots$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► Ext^{*}_{CG}(C, V) is cohomology of this complex.

With Coefficients

$$\mathcal{SG} = \left\{ \phi: \mathcal{G} o \mathbb{C} \mid \ orall_k \sum_{g \in \mathcal{G}} \left| \phi(g) \right| \left(1 + \ell_\mathcal{G}(g)
ight)^k < \infty
ight\}$$

Suppose V is a bornological SG-module.

►
$$HP^*(G; V) = bExt^*_{SG}(\mathbb{C}, V).$$

 $0 \leftarrow \mathbb{C} \stackrel{\rightarrow}{\leftarrow} P_0 \stackrel{\rightarrow}{\leftarrow} P_1 \stackrel{\rightarrow}{\leftarrow} P_2 \stackrel{\rightarrow}{\leftarrow} \dots$

 $0 \rightarrow \mathsf{bHom}_{\mathcal{S}\mathcal{G}}(\mathcal{P}_0, \mathcal{V}) \rightarrow \mathsf{bHom}_{\mathcal{S}\mathcal{G}}(\mathcal{P}_1, \mathcal{V}) \rightarrow \mathsf{bHom}_{\mathcal{S}\mathcal{G}}(\mathcal{P}_2, \mathcal{V}) \rightarrow \dots$

CG → SG induces HP*(G; V) → H*(G; V) for all bornological SG-modules V.

The Isocohomological Property

Definition

G has the (strong) isocohomological property if for all bornological *SG*-modules *V*, the comparison map $HP^*(G; V) \rightarrow H^*(G; V)$ is an isomorphism. *G* is isocohomological for a particular *SG*-module *V* if the particular comparison map is an isomorphism.

- Nilpotent groups (Ron Ji, Ralf Meyer)
- Combable groups (Crichton Ogle, Ralf Meyer)

Other Bounding Classes

$\mathcal{B} \subset \{\phi : [0,\infty) \to (0,\infty) | \phi \text{ is nondecreasing } \}$

- ▶ $1 \in \mathcal{B}$.
- ▶ If ϕ and $\phi' \in \mathcal{B}$, there is $\varphi \in \mathcal{B}$ such that $\lambda \phi + \mu \phi' \leq \varphi$, for nonnegative real λ, μ .
- If $\phi \in \mathcal{B}$ and g is a linear function, there is $\psi \in \mathcal{B}$ such that $\phi \circ g \leq \psi$.

Examples: \mathbb{R}^+ , $\{e^f \mid f \text{ is linear }\}$.

Connes-Moscovici

Theorem (Connes-Moscovici, 90)

Suppose G is a finitely generated discrete group endowed with word-length function ℓ_G . If G has the Rapid Decay property, and has cohomology of polynomial growth, then G satisfies the Strong Novikov Conjecture.

$$\sum_{g \in G} |f(g)|^2 \, (1 + \ell_G(g))^{2k}$$

- $HP^*(G) \rightarrow H^*(G)$ surjective.
- Chatterji-Ruane: Groups hyperbolic relative to polynomial growth subgroups are RD.
- ► Those groups are also (strongly) isocohomological.

Bass Conjecture

Due to Burghelea, $HC_*(\mathbb{C}G) = \bigoplus_{x \in \langle G \rangle} HC_*(\mathbb{C}G)_x$.

Conjecture

Strong Bass Conjecture For each non-elliptic class x, the image of the composition $\pi_x \circ ch_* : K_*(\mathbb{C}G) \to HC_*(\mathbb{C}G)_x$ is zero.

 $x \in G$ > satisfies 'nilpotency condition' if $S_x : HC_*(\mathbb{C}G)_x \to HC_{*-2}(\mathbb{C}G)_x$ is nilpotent.

Observation (Eckmann, Ji)

Let x be a non-elliptic conjugacy class satisfying the nilpotency condition. The composition $\mathcal{K}_*(\mathbb{C}G) \to \mathcal{HC}_*(\mathbb{C}G) \xrightarrow{\pi_X} \mathcal{HC}_*(\mathbb{C}G)_X$ is zero. In particular the Strong Bass Conjecture holds for G if each non-elliptic conjugacy class satisfies the nilpotency condition.

Bass Conjecture

- For a non-elliptic $x \in G >$, take $h \in x$.
- G_h centralizer with $N_h = G_h/(h)$.
- Burghelea: $HC_*(\mathbb{C}G)_X \cong H_*(N_h)$.

$$0 \rightarrow (h) \rightarrow G_h \rightarrow N_h \rightarrow 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If N_h has finite virtual cohomological dimension, G satisfies nilpotency condition.

ℓ^1 Bass Conjecture

• $K_*(\ell^1 G) \cong K_*(\mathcal{S} G).$

• $ch_*: K_*(\mathcal{SG}) \to HC_*(\ell^1G)$ factors through $HC_*(\mathcal{SG})$.

Conjecture

Strong ℓ^1 - **Bass Conjecture** For each non-elliptic conjugacy class, the image of the composition $\pi_x \circ ch_* : K_*(SG) \to HC_*(SG)_x$ is zero.

Is true whenever, for each non-elliptic conjugacy class x, $S_x^t : HC_*(SG)_x \to HC_{*-2}(SG)_x$ is nilpotent.

Question

"If S_x is nilpotent, when is S_x^t nilpotent?"

ℓ^1 Bass Conjecture

Definition

G satisfies a polynomial conjugacy problem if for each non-elliptic $x \in G$ between G such that: $u, v \in x$ then there is $g \in G$ with $g^{-1}ug = v$ such that $\ell_G(g) \leq P_x(\ell_G(u) + \ell_G(v))$.

- Hyperbolic groups
- Pseudo-Anosov classes in Mapping class groups
- Mapping class groups

If G satisfies a polynomial conjugacy bound for a non-elliptic class x, $HC_*(SG)_x \cong HP_*^{\ell_G}(N_h)$. If in addition N_h isocohomological $S_x^t : HC_*(SG)_x \to HC_{*-2}(SG)_x$

is nilpotent, too.

HF^{∞} Groups

Definition

A group is of type HF^{∞} if it has a classifying space the type of a "simplicial complex" with finitely many cells in each dimension.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dehn Functions

Weighted Dehn Functions

Suppose that X is a weakly contractible complex with fixed basepoint x_0 .

- Define the weight of a vertex v to be $\ell_X(v) = d_{X^{(1)}}(v, x_0)$.
- Define the weight of a higher dimensional simplex to be the sum of the weights of its vertices.
- ► The weighted volume of an *n*-dimensional subcomplex is the sum of the weights of its *n*-dimensional cells.

 Get 'Weighted Dehn Functions' rather than just 'Dehn Functions'.

A Geometric Characterization

Theorem (Ji-R,2009)

For an HF^{∞} group G, the following are equivalent.

- (1) All higher Dehn functions of G are polynomially bounded.
- (2) $HP^*(G; V) \rightarrow H^*(G; V)$ is an isomorphism for all coefficients V. (i.e. G is strongly isocohomological)

(3) $HP^*(G; V) \to H^*(G; V)$ is surjective for all coefficients V.

(1) implies (2)

- ▶ Denote by X is the universal cover of the HF[∞] classifying space.
- ► C_{*}(X) is a projective resolution of C over CG.
- Length function on the vertices of X: $\ell_X(x) = d_X(x,*)$.
- Length function on $X^{(n)}$: $\ell_X(\sigma) = \sum_{v \in \sigma} \ell_X(v)$.
- ► S_n(X) the completion of C_n(X) under the family of norms given by

$$\|\phi\|_k = \sum_{\sigma \in \mathcal{X}^{(n)}} |\phi(\sigma)| \left(1 + \ell_X(\sigma)
ight)^k$$

 S_{*}(X) a projective resolution of C over SG. (The Dehn function bounds ensure a bounded contracting homotopy of S_{*}(X))

(1) implies (2)

For each *n* there is finite dimensional W_n with

$$\begin{array}{rcl} S_n(X) &\cong& \mathcal{S}G\hat{\otimes}W_n\\ C_n(X) &\cong& \mathbb{C}G\otimes W_n \end{array}$$

$$\mathrm{bHom}_{\mathcal{S}G}(\mathcal{S}_n(X), V) \cong \mathrm{bHom}_{\mathcal{S}G}(\mathcal{S}G \hat{\otimes} W_n, V)$$

$$\cong$$
 Hom (W_n, V)

$$\cong$$
 Hom_{CG}(CG \otimes W_n,V)

$$\cong$$
 Hom_{CG}($C_n(X), V$)

After applying $bHom_{SG}(\cdot, V)$ to $S_*(X)$ and $Hom_{\mathbb{C}G}(\cdot, V)$ to $C_*(X)$ we obtain isomorphic cochain complexes.

the rest

- (2) implies (3) is obvious.
- (3) implies (1): This implication is similar to Mineyev's corresponding result on hyperbolic group and bounded cohomology.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Arzhantseva-Osin

- S free abelian group with free generating set $\{s_1, s_2\}$.
- A free abelian group with free generating set $\{a_1, a_2, a_3\}$.
- β: S → SL(3, Z) an injection such that β(s_i) is semi-simple with real spectrum.

- $\blacktriangleright P = A \rtimes_{\beta} S.$
- ► For all $a \in A$, $\ell_P(a) \le C \log(1 + \ell_A(a)) + \epsilon$
- A solvable group with quadratic first Dehn function.
- Higher Dehn functions?

Hochschild-Serre Spectral Sequence

- $\blacktriangleright \ 0 \rightarrow H \rightarrow G \rightarrow Q \rightarrow 0$
- ▶ Let *H* be isocohomological for ℂ with respect to the restricted length from *G*.
- Equip Q with the quotient length.

Theorem (Ogle, R)

There is a spectral sequence with $E_2^{p,q} \cong HP^p(Q; HP^q(H))$ which converges to $HP^*(G)$.

Hochschild-Serre Spectral Sequence

- $C^{p,q} = \mathsf{bHom}_{\mathcal{S}\mathcal{Q}}(\mathcal{S}\mathcal{Q}^{\hat{\otimes}p+1},\mathsf{bHom}_{\mathcal{S}\mathcal{H}}(\mathcal{S}\mathcal{G}^{\hat{\otimes}q+1},\mathbb{C}))$
- Rowwise filtration collapses to HP*(G).
- To identify E₂ term, need the isocohomological property of H and the 'bounded mapping theorem' of Hogbe-Nlend.

Hochschild-Serre Spectral Sequence

Comparing this Spectral Sequence with the usual Hochschild-Serre Spectral Sequence we get the following.

Corollary

If Q is isocohomological for the twisted coefficients $HP^*(H)$, in the quotient length, then G is isocohomological for \mathbb{C} .

Polynomial extensions

Definition

An extension $0 \rightarrow H \rightarrow G \rightarrow Q \rightarrow 0$ is a polynomial extension if there is a cross section yielding a cocycle of polynomial growth and inducing a polynomial action of Q on H.

These extensions were first studied by Noskov in relation to the RD property.

Theorem (Noskov, 92)

Let G be a polynomial extension of the finitely generated group Q by the finitely generated group H. If H and Q have the Rapid Decay property, so does G.

Back to Arzhantseva-Osin

Lemma (Ji-Ogle-R)

The comparison map $\Phi : HP^3(P) \to H^3(P)$ is not surjective. Use the commutative diagram below and the fact that the map $HP^3(A) \to H^3(A)$ is zero.

Corollary

The second Dehn function d_P^2 of P satisfies $e^n \leq d_P^2(n) \leq e^{n^2}$

Bass-Serre Theory

- ► G acts cocompactly and without inversion on a tree T.
- ▶ V, E representatives of orbits of vertices and edges under G.
- ▶ For $v \in V$, G_v the stabilizer of that vertex. G_e similarly.

Theorem (Serre, 77)

For each G-module M, there is a long-exact sequence

$$\ldots \rightarrow H^{i}(G; M) \rightarrow \prod_{v \in V} H^{i}(G_{v}; M) \rightarrow \prod_{e \in V} H^{i}(G_{e}; M) \rightarrow H^{i+1}(G; M) \rightarrow .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bass-Serre Theory

• Equip G_v , G_e with restricted length, ℓ_G .

Lemma (R)

For each bornological SG-module M, there is a long exact sequence

$$\ldots \rightarrow HP^{i}(G; M) \rightarrow \prod_{v \in V} HP^{i}(G_{v}; M) \rightarrow \prod_{e \in V} HP^{i}(G_{e}; M) \rightarrow HP^{i+1}(G; M)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

Let G, G_v , and G_e be as above. If each G_v and G_e are isocohomological in ℓ_G , then G is isocohomological.

Complexes of Groups

- ► Group G acting cocompactly on contractible simplicial complex X without inversion.
- 'Complexes of Groups' instead of 'Graphs of Groups'
- Σ a set of representatives of the orbits of simplices of X, under G.
- For $\sigma \in \Sigma$, G_{σ} the stabilizer of σ .

Theorem (Serre, 71)

For each G-module M there is a spectral sequence with E_1 term the product

$$E_1^{p,q} \cong \prod_{\sigma \in \Sigma_p} H^q(G_{\sigma};M)$$

and which converges to $H^*(G; M)$.

Complexes of Groups

- ► Dehn functions of *X* polynomially bounded.
- Equip each G_{σ} with ℓ_G .

Theorem (Ji-Ogle-R)

For each bornological SG-module M there is a spectral sequence with

$$E_1^{p,q} \cong \prod_{\sigma \in \Sigma_p} HP^q(G_{\sigma};M)$$

and which converges to $HP^*(G; M)$.

Complexes of Groups

- ► Finite edge stabilizers ensure *G* finitely relatively presented.
- Polynomial Dehn function of X gives polynomially bounded relative Dehn function of G.
- These ensure that the G_{σ} are only polynomially distorted in G.

Corollary

If each G_{σ} is isocohomological, so is G.

This generalizes our earlier result.

Theorem (Ji-R, 2009)

Suppose that the group G is relatively hyperbolic with respect to the HF^{∞} subgroups H_1, \ldots, H_n . If each H_i is isocohomological, so is G.