The Isocohomological Property

Bobby Ramsey
Department of Mathematical Sciences IUPUI

April 27, 2010

Traces

- $\phi: A \rightarrow R$ a trace, $\phi(a b)=\phi(b a)$.
- Universal trace $T: A \rightarrow \frac{A}{[A, A]}$.

What happens for $A=\mathbb{Z} G$?

Traces for $\mathbb{Z} G$

- G - finitely generated group.

$$
\frac{\mathbb{Z} G}{[\mathbb{Z} G, \mathbb{Z} G]} \cong \bigoplus_{x \in\langle G\rangle} \mathbb{Z}
$$

- For $x \in<G>, \pi_{x}: \bigoplus_{x \in<G>} \mathbb{Z} \rightarrow \mathbb{Z}$.
- Let P a finitely generated projective $\mathbb{Z} G$-module.
- There is Q with $P \oplus Q \cong(\mathbb{Z} G)^{n}$.
- $\operatorname{End}_{\mathbb{Z} G}(P \oplus Q) \cong M_{n \times n}(\mathbb{Z} G)$
- $\quad d_{P}$ extends by zero to an element of $M_{n \times n}(\mathbb{Z} G)$.

Analogue Over \mathbb{C}

- Finitely generated projective \mathbb{C}-modules are finite dimensional \mathbb{C}-vector spaces.
- $P \oplus Q \cong \mathbb{C}^{n}$
- $\quad l d_{P}$ extends by zero to an element of $M_{n \times n}(\mathbb{C})$.
- Is the projection onto P.
- The trace of this projection is the rank of P, an integer.

Bass Conjecture

- $\operatorname{Tr}: M_{n \times n}(\mathbb{Z} G) \rightarrow \frac{\mathbb{Z} G}{[\mathbb{Z} G, \mathbb{Z} G]}$.
- $\operatorname{Tr}\left(I d_{P}\right)$ is an element of $\bigoplus_{x \in\langle G\rangle} \mathbb{Z}$.
- For $g \in G$, the P-rank of g is the number

$$
r_{P}(g)=\pi_{<g>} \operatorname{Tr}\left(I d_{P}\right)
$$

Conjecture (Classical Bass Conjecture, 1976)

For any finitely generated projective $\mathbb{Z} G$-module P, and any non-identity element $g \in G, r_{P}(g)=0$.

Theorem (Linell)

The classical Bass conjecture holds for all non-identity torsion elements.

Hochschild Homology

Let A be a unital algebra, and $C_{*}(A)$ the chain complex

$$
\ldots \xrightarrow{b} A^{\otimes 4} \xrightarrow{b} A^{\otimes 3} \xrightarrow{b} A \otimes A \xrightarrow{b} A
$$

where $b: A^{\otimes n+1} \rightarrow A^{\otimes n}$ is given by

$$
\begin{aligned}
b\left(a_{0}, a_{1}, \ldots, a_{n}\right)= & \sum_{i=0}^{n-1}(-1)^{i}\left(a_{0}, a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right) \\
& +(-1)^{n}\left(a_{n} a_{0}, a_{1}, \ldots, a_{n-1}\right)
\end{aligned}
$$

- Hochschild Homology: $H H_{*}(A)$.
- $H H_{0}(A) \cong \frac{A}{[A, A]}$.

Hattori-Stallings Trace

The map associating, to a finitely generated projective A-module P, $\operatorname{Tr}\left(I d_{P}\right) \in H H_{0}(A)$ induces a homomorphism of abelian groups, the Hattori-Stallings trace.

$$
\operatorname{Tr}^{H S}: K_{0}(A) \rightarrow H H_{0}(A)
$$

The Bass conjecture for $\mathbb{Z} G$ is giving the range of $T_{r} H S$.

Cyclic Bicomplex

$C C_{*, *}(A)$ the first quadrant bicomplex

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \downarrow \\
& A^{\otimes 3} \stackrel{1-t}{\longleftarrow} A^{\otimes 3} \stackrel{N}{\longleftarrow} A^{\otimes 3} \stackrel{1-t}{\longleftarrow} A^{\otimes 3} \longleftarrow N A^{\otimes 3} \\
& b \downarrow \quad-b^{\prime} \downarrow \quad b \downarrow \quad-b^{\prime} \downarrow \quad b \downarrow \\
& A^{\otimes 2} \stackrel{1-t}{\longleftarrow} A^{\otimes 2} \longleftarrow N A^{\otimes 2} \stackrel{1-t}{\longleftarrow} A^{\otimes 2} \longleftarrow N A^{\otimes 2} \\
& b \downarrow \quad-b^{\prime} \downarrow \quad b \downarrow \quad-b^{\prime} \downarrow \quad b \downarrow \\
& A \stackrel{1-t}{\longleftarrow} A \stackrel{N}{\longleftarrow} A \stackrel{1-t}{\longleftarrow} A \longleftarrow
\end{aligned}
$$

Cyclic Homology

$$
\begin{aligned}
b^{\prime}\left(a_{0}, a_{1}, \ldots, a_{n}\right)= & \sum_{i=0}^{n-1}(-1)^{i}\left(a_{0}, a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right) \\
b\left(a_{0}, a_{1}, \ldots, a_{n}\right)= & \sum_{i=0}^{n-1}(-1)^{i}\left(a_{0}, a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right) \\
& +(-1)^{n}\left(a_{n} a_{0}, a_{1}, \ldots, a_{n-1}\right) \\
t\left(a_{0}, a_{1}, \ldots, a_{n}\right)= & (-1)^{n}\left(a_{n}, a_{0}, \ldots, a_{n-1}\right) \\
N= & 1+t+t^{2}+\ldots+t^{n}
\end{aligned}
$$

Cyclic Homology:

$$
H C_{*}(A)=H_{*}\left(\operatorname{Tot}\left(C C_{*, *}(A)\right)\right)
$$

Chern-Connes Characters

- $H C_{0}(A) \cong H H_{0}(A)$.
- Chern-Connes characters $c h_{n}^{m}: K_{n}(A) \rightarrow H C_{n+2 m}(A)$.
- $c h_{0}^{0}=\operatorname{Tr}^{H S}$.
- $S \circ c h_{n}^{m}=c h_{n}^{m-1}$

Cyclic Homology of Group Algebras

Theorem (Burghelea)

$$
H C_{*}(\mathbb{C} G) \cong \bigoplus_{x \in<G>} H C_{*}(\mathbb{C} G)_{x}
$$

For $h \in x$, let G_{h} be the centralizer of h in $G, N_{h}=G_{h} /(h)$.

- For x elliptic (torsion), $H C_{*}(\mathbb{C} G)_{x} \cong H_{*}\left(N_{h}\right) \otimes H C_{*}(\mathbb{C})$.
- For x non-elliptic (non-torsion), $H C_{*}(\mathbb{C} G)_{x} \cong H_{*}\left(N_{h}\right)$.
- $S=\bigoplus_{x \in<G>} S_{x}$.
- 'Elliptic Summand' $H C_{*}(\mathbb{C} G)_{e l l}=\bigoplus_{x e l l} H C_{*}(\mathbb{C} G)_{x}$.
- 'Non-Elliptic Summand' $H C_{*}(\mathbb{C} G)_{\text {non-ell }}=\bigoplus_{x \text { non-ell }} H C_{*}(\mathbb{C} G)_{x}$.

Strong Bass Conjecture

Conjecture (Strong Bass Conjecture)

For each non-elliptic conjugacy class x, the image of the composition $\pi_{x} \circ \mathrm{ch}_{*}: K_{*}(\mathbb{C} G) \rightarrow H C_{*}(\mathbb{C} G) \rightarrow H C_{*}(\mathbb{C} G)_{x}$ is zero.
$x \in<G>$ satisfies the 'nilpotency condition' if $S_{x}: H C_{*}(\mathbb{C} G)_{x} \rightarrow H C_{*-2}(\mathbb{C} G)_{x}$ is nilpotent.

Observation (Eckmann, Ji)

Let x be a non-elliptic conjugacy class satisfying the nilpotency condition. The composition $K_{*}(\mathbb{C} G) \rightarrow H C_{*}(\mathbb{C} G) \xrightarrow{\pi_{x}} H C_{*}(\mathbb{C} G)_{X}$ is zero. In particular the Strong Bass Conjecture holds for G if each non-elliptic conjugacy class satisfies the nilpotency condition.

When is this nilpotency condition satisfied?

- $S_{x}: H C_{*}(\mathbb{C} G)_{x} \rightarrow H C_{*-2}(\mathbb{C} G)_{x}$.
- $S_{x}: H_{*}\left(N_{h}\right) \rightarrow H_{*-2}\left(N_{h}\right)$.
- The extension below determines a 2-cocycle of N_{h}.

$$
0 \rightarrow(h) \rightarrow G_{h} \rightarrow N_{h} \rightarrow 0
$$

- S_{x} acts as the cap product with this cocycle.
- If N_{h} has finite virtual cohomological dimension, G satisfies nilpotency condition.

Group Cohomology

Suppose G is a finitely generated discrete group.

- $C^{n}(G)=\left\{\phi: G^{n} \rightarrow \mathbb{C}\right\}$
- d: $C^{n}(G) \rightarrow C^{n+1}(G)$

$$
\begin{gathered}
(d \phi)\left(g_{0}, g_{1}, \ldots, g_{n}\right)=\sum_{i=0}^{n}(-1)^{i} \phi\left(g_{0}, g_{1}, \ldots, \widehat{g}_{i}, \ldots, g_{n}\right) \\
0 \rightarrow C^{0}(G) \rightarrow C^{1}(G) \rightarrow \ldots
\end{gathered}
$$

A usual cochain complex for calculating group cohomology, $H^{*}(G)$.

Accounting for Growth

Endow G with a word-length function ℓ_{G}.

- $\phi \in P C^{n}(G) \subset C^{n}(G)$ if there is a polynomial P such that

$$
\left|\phi\left(g_{1}, \ldots, g_{n}\right)\right| \leq P\left(\ell_{G}\left(g_{1}\right)+\ell_{G}\left(g_{2}\right)+\ldots+\ell_{G}\left(g_{n}\right)\right)
$$

- $P C^{*}(G)$ forms a subcomplex of $C^{*}(G)$.
- $H P^{n}(G)$, the polynomial cohomology of G.
- $P C^{*}(G) \rightarrow C^{*}(G)$ induces a comparison map $H P^{*}(G) \rightarrow H^{*}(G)$.
- For many groups this map is an isomorphism.

With Coefficients

For a $\mathbb{C} G$-module V :

- $H^{*}(G ; V)=\operatorname{Ext}_{\mathbb{C} G}^{*}(\mathbb{C}, V)$.

$$
0 \leftarrow \mathbb{C} \leftarrow P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow \ldots
$$

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{C} G}\left(P_{0}, V\right) \rightarrow \operatorname{Hom}_{\mathbb{C} G}\left(P_{1}, V\right) \rightarrow \operatorname{Hom}_{\mathbb{C} G}\left(P_{2}, V\right) \rightarrow \ldots
$$

- $\mathrm{Ext}_{\mathbb{C} G}^{*}(\mathbb{C}, V)$ is cohomology of this complex.

With Coefficients

$$
\mathcal{S G}=\left\{\phi: G \rightarrow \mathbb{C}\left|\forall_{k} \sum_{g \in G}\right| \phi(g) \mid\left(1+\ell_{G}(g)\right)^{k}<\infty\right\}
$$

Suppose V is a bornological $\mathcal{S} G$-module.

- $H P^{*}(G ; V)=\mathrm{bExt}_{\mathcal{S} G}^{*}(\mathbb{C}, V)$.

$$
0 \leftarrow \mathbb{C} \rightleftarrows P_{0} \rightleftarrows P_{1} \rightleftarrows P_{2} \rightleftarrows \ldots
$$

$0 \rightarrow \operatorname{bHom}_{\mathcal{S} G}\left(P_{0}, V\right) \rightarrow \operatorname{bHom}_{\mathcal{S G}}\left(P_{1}, V\right) \rightarrow \operatorname{bHom}_{\mathcal{S} G}\left(P_{2}, V\right) \rightarrow \ldots$

- $\mathbb{C} G \hookrightarrow \mathcal{S} G$ induces $H P^{*}(G ; V) \rightarrow H^{*}(G ; V)$ for all bornological $\mathcal{S} G$-modules V.

The Isocohomological Property

Definition

G has the (strong) isocohomological property if for all bornological $\mathcal{S} G$-modules V, the comparison map $H P^{*}(G ; V) \rightarrow H^{*}(G ; V)$ is an isomorphism. G is V-isocohomological, for a particular $\mathcal{S} G$-module V, if that particular comparison map is an isomorphism.

- Nilpotent groups (Ron Ji, Ralf Meyer)
- Combable groups (Crichton Ogle, Ralf Meyer)

Other Bounding Classes

$\mathcal{B} \subset\{\phi:[0, \infty) \rightarrow(0, \infty) \mid \phi$ is nondecreasing $\}$

- $1 \in \mathcal{B}$.
- If ϕ and $\phi^{\prime} \in \mathcal{B}$, there is $\psi \in \mathcal{B}$ such that $\lambda \phi+\mu \phi^{\prime} \leq \psi$, for nonnegative real λ, μ.
- If $\phi \in \mathcal{B}$ and g is a linear function, there is $\psi \in \mathcal{B}$ such that $\phi \circ g \leq \psi$.

Examples: $\mathbb{R}^{+},\left\{e^{f} \mid f\right.$ is linear $\}$.

ℓ^{1} Bass Conjecture

- $\mathcal{S} G \hookrightarrow \ell^{1} G$ induces $K_{*}(\mathcal{S} G) \cong K_{*}\left(\ell^{1} G\right)$.
- ch : $K_{*}\left(\ell^{1} G\right) \rightarrow H C_{*}\left(\ell^{1} G\right)$ factors through $H C_{*}(\mathcal{S} G)$.

Conjecture (Strong ℓ^{1}-Bass Conjecture)

For each non-elliptic conjugacy class x, the image of the composition $\pi_{\times} \circ c h_{*}: K_{*}(\mathcal{S G}) \rightarrow H C_{*}(\mathcal{S} G) \rightarrow H C_{*}(\mathcal{S G})_{x}$ is zero.

Observation

Let x be a non-elliptic conjugacy class for which S_{x}^{t} is nilpotent. The composition $K_{*}(\mathcal{S G}) \rightarrow H C_{*}(\mathcal{S} G) \xrightarrow{\pi_{x}} H C_{*}(\mathcal{S} G)_{x}$ is zero.

ℓ^{1} Bass Conjecture

Question

If S_{x} is nilpotent, when is S_{x}^{t} nilpotent?'

Definition

G satisfies a polynomial conjugacy problem if for each non-elliptic $x \in<G>$ there is P_{x} such that: $u, v \in x$ then there is $g \in G$ with $g^{-1} u g=v$ such that $\ell_{G}(g) \leq P_{x}\left(\ell_{G}(u)+\ell_{G}(v)\right)$.

- Hyperbolic groups
- Mapping class groups

If G satisfies a polynomial conjugacy bound for a non-elliptic class x, $H C_{*}(\mathcal{S G})_{x} \cong H P_{*}^{\ell_{G}}\left(N_{h}\right)$.
If in addition N_{h} isocohomological $S_{x}^{t}: H C_{*}(\mathcal{S G})_{x} \rightarrow H C_{*-2}(\mathcal{S G})_{x}$ is nilpotent, too.

Connes-Moscovici

Theorem (Connes-Moscovici, 1990)

Suppose G is a finitely generated discrete group endowed with word-length function ℓ_{G}. If G has the Rapid Decay property, and has cohomology of polynomial growth, then G satisfies the Strong Novikov Conjecture.

$$
\sum_{g \in G}|f(g)|^{2}\left(1+\ell_{G}(g)\right)^{2 k}
$$

- $H P^{*}(G) \rightarrow H^{*}(G)$ surjective. 'epicohomological'

Theorem (Ogle preprint, 2010)

Suppose G is a finitely generated discrete group endowed with word-length function ℓ_{G}. If G is \mathbb{C}-‘epicohomological’, then G satisfies the Strong Novikov Conjecture.

$H F^{\infty}$ Groups

Definition

A group is of type $H F^{\infty}$ if it has a classifying space the type of a polyhedral complex with finitely many cells in each dimension.

Dehn Functions

Dehn Functions

Weighted Dehn Functions

Suppose that X is a weakly contractible complex with fixed basepoint x_{0}.

- Define the weight of a vertex v to be $\ell_{X}(v)=d_{X^{(1)}}\left(v, x_{0}\right)$.
- Define the weight of a higher dimensional simplex to be the sum of the weights of its vertices.
- The weighted volume of an n-dimensional subcomplex is the sum of the weights of its n-dimensional cells.
- Get 'Weighted Dehn Functions' rather than just 'Dehn Functions'.

A Geometric Characterization

Theorem (Ji-R, 2009)

For an ${H F^{\infty}}^{\text {group } G, ~ t h e ~ f o l l o w i n g ~ a r e ~ e q u i v a l e n t . ~}$
(1) All higher Dehn functions of G are polynomially bounded.
(2) G is strongly isocohomological.
(3) $H P^{*}(G ; V) \rightarrow H^{*}(G ; V)$ is surjective for all $\mathcal{S} G$-modules V.

(1) implies (2)

- Denote by X is the universal cover of the $H F^{\infty}$ classifying space.
- $C_{*}(X)$ is a projective resolution of \mathbb{C} over $\mathbb{C} G$.
- Length function on the vertices of $X: \ell_{X}(x)=d_{X}(x, *)$.
- Length function on $X^{(n)}: \ell_{X}(\sigma)=\sum_{v \in \sigma} \ell_{X}(v)$.
- $S_{n}(X)$ the completion of $C_{n}(X)$ under the family of norms given by

$$
\|\phi\|_{k}=\sum_{\sigma \in X^{(n)}}|\phi(\sigma)|\left(1+\ell_{X}(\sigma)\right)^{k}
$$

- $S_{*}(X)$ a projective resolution of \mathbb{C} over $\mathcal{S G}$. (The Dehn function bounds ensure a bounded contracting homotopy of $\left.S_{*}(X)\right)$

(1) implies (2)

For each n there is finite dimensional W_{n} with

$$
\begin{aligned}
& S_{n}(X) \cong \mathcal{S} G \hat{\otimes} W_{n} \\
& C_{n}(X) \cong \mathbb{C} G \otimes W_{n}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{bHom}_{\mathcal{S G}}\left(S_{n}(X), V\right) & \cong \operatorname{bom}_{\mathcal{S} G}\left(\mathcal{S G} \hat{\otimes} W_{n}, V\right) \\
& \left.\cong \operatorname{Hom}_{n} W_{n}, V\right) \\
& \cong \operatorname{Hom}_{\mathbb{C} G}\left(\mathbb{C} G \otimes W_{n}, V\right) \\
& \cong \operatorname{Hom}_{\mathbb{C} G}\left(C_{n}(X), V\right)
\end{aligned}
$$

After applying bHom $\mathcal{S G}(\cdot, V)$ to $S_{*}(X)$ and $\operatorname{Hom}_{\mathbb{C} G}(\cdot, V)$ to $C_{*}(X)$ we obtain isomorphic cochain complexes.

the rest

- (2) implies (3) is obvious.
- (3) implies (1): This implication is similar to Mineyev's corresponding result on hyperbolic group and bounded cohomology.

Relative Group Cohomology

Let G be a finitely generated group and \mathcal{H} a finite family of finitely generated subgroups.

- $\mathbb{C} G / \mathcal{H}=\bigoplus_{H \in \mathcal{H}} \mathbb{C} G / H$.
- $\varepsilon: \mathbb{C} G / \mathcal{H} \rightarrow \mathbb{C}$ defined by $\varepsilon(g H)=1$.
- $\Delta=\operatorname{ker} \varepsilon$.

For a $\mathbb{C} G$-module V, the relative group cohomology is given by:

$$
H^{*}(G, \mathcal{H} ; V)=\operatorname{Ext}_{\mathbb{C} G}^{*-1}(\Delta, V)
$$

Relative Classifying Spaces

Definition

G has relative type $H F^{\infty}$ with respect to H if there is a polyhedral complex X which is a model of $B G$ which contains $B H$ and only finitely many cells not in $B H$, in each dimension.

- $E G=\widetilde{B G}$ with $p: E G \rightarrow B G$.
- $E \mathcal{H}$ the disjoint union of the connected components of $p^{-1}(B H)$.
- $E G / / E \mathcal{H}$ obtained by collapsing each component in $E \mathcal{H}$ to a point.

$$
\ldots \rightarrow C_{3}(E G / / E \mathcal{H}) \rightarrow C_{2}(E G / / E \mathcal{H}) \rightarrow C_{1}(E G / / E \mathcal{H}) \rightarrow \Delta \rightarrow 0
$$

Relative Group Cohomology

Applying $\operatorname{Ext}_{\mathbb{C} G}^{*}(\cdot, V)$ to the short-exact sequence

$$
\Delta \hookrightarrow \mathbb{C} G / \mathcal{H} \rightarrow \mathbb{C}
$$

gives a long-exact sequence
$\ldots \rightarrow H^{k}(G ; V) \rightarrow H^{k}(\mathcal{H} ; V) \rightarrow H^{k+1}(G ; \mathcal{H} ; V) \rightarrow H^{k+1}(G ; V) \rightarrow \ldots$

Relative Polynomial Cohomology

$$
w: \coprod_{H \in \mathcal{H}} G / H \rightarrow \mathbb{N}
$$

- $\mathcal{S G} / H=\left\{f: G / H \rightarrow \mathbb{C}\left|\sum_{x \in G / H}\right| f(x) \mid(1+w(x))^{k}<\infty\right\}$.
- $\mathcal{S} G / \mathcal{H}=\bigoplus_{H \in \mathcal{H}} \mathcal{S} G / H$.
- $\varepsilon: \mathcal{S} G / \mathcal{H} \rightarrow \mathbb{C}$ defined by $\varepsilon(g H)=1$.
- $\mathcal{S} \Delta=\operatorname{ker} \varepsilon$.

For an $\mathcal{S G}$-module V, the relative polynomial cohomology is given by:

$$
H P^{*}(G, \mathcal{H} ; V)=\operatorname{bExt}_{\mathcal{S} G}^{*-1}(\mathcal{S} \Delta, V)
$$

Relative Isocohomologicality

Definition

G has the (strong) relative isocohomological property with respect to \mathcal{H} if for all bornological $\mathcal{S} G$-modules V, the relative comparison map $H P^{*}(G, \mathcal{H} ; V) \rightarrow H^{*}(G, \mathcal{H} ; V)$ is an isomorphism.

- Relatively hyperbolic groups.
- Groups acting cocompactly without inversion and with finite edge stabilizers on a contractible simplicial complex with polynomially bounded Dehn functions.
- Groups acting cocompactly without inversion on trees.

Relative Dehn Functions

Definition

The relative Dehn functions of G with respect to H are the Dehn functions of $E G / / E \mathcal{H}$.

Theorem

Suppose the finitely generated group G is HF^{∞} relative to the finite family of finitely generated subgroups \mathcal{H}, with $B G$ of type $D F$ relative to \mathcal{H}.
(1) The relative Dehn functions of G relative to \mathcal{H} are each polynomially bounded.
(2) G is strongly relatively isocohomological with respect to \mathcal{H}.
(3) The comparison map $H P^{*}(G, \mathcal{H} ; A) \rightarrow H P^{*}(G, \mathcal{H} ; A)$ is surjective for all bornological $\mathcal{S G}$-modules A.

A Long-Exact Sequence

Lemma

Let G be a group with length function L, H a subgroup of G equipped with the restricted length function. For any bornological $\mathcal{S} G$-module A, there is an isomorphism:

$$
\mathrm{bExt}_{\mathcal{S} G}^{*}(\mathcal{S} G / H, A) \cong \mathrm{bExt}_{\mathcal{S} H}^{*}(\mathbb{C}, A)
$$

Follows from an identification of $\mathcal{S} G \cong \mathcal{S} G / H \hat{\otimes} \mathcal{S H}$ as right $\mathcal{S H}$-modules.

A Long-Exact Sequence

Theorem
Let G and \mathcal{H} be as above and let V be a bornological $\mathcal{S} G$-module. Equip each $H \in \mathcal{H}$ with the length restricted from G. There is a long exact sequence:
$\ldots \rightarrow H P^{k}(G ; V) \rightarrow H P^{k}(\mathcal{H} ; V) \rightarrow H P^{k+1}(G, \mathcal{H} ; V) \rightarrow H P^{k+1}(G ; V) \rightarrow$

Corollary

Let each $H \in \mathcal{H}$ be strongly isocohomological, and G strongly relatively isocohomological with respect to \mathcal{H}. Then G is strongly isocohomological.

