The polynomially bounded conjugacy problem for relatively hyperbolic groups

Bobby Ramsey

IUPUI

- G finitely generated group
- P finitely generated $\mathbb{Z}G$ -module
- $P \oplus Q \cong (\mathbb{Z}G)^n$

• Trace
$$Tr: M_{n \times n} (\mathbb{Z}G) \to \frac{\mathbb{Z}G}{[\mathbb{Z}G,\mathbb{Z}G]}$$

● P-rank of
$$g \in G$$
, $r_P(g) = \pi_{\langle g \rangle} TrId_P$

• Trace
$$Tr: M_{n \times n} (\mathbb{Z}G) \to \frac{\mathbb{Z}G}{[\mathbb{Z}G,\mathbb{Z}G]}$$

● *P*-rank of $g \in G$, $r_P(g) = \pi_{\leq g >} TrId_P$

Conjecture. Classical Bass Conjecture For any finitely generated projective $\mathbb{Z}G$ -module P, $r_P(g) = 0$ for $g \neq 1_G$.

• Trace
$$Tr: M_{n \times n} (\mathbb{Z}G) \to \frac{\mathbb{Z}G}{[\mathbb{Z}G,\mathbb{Z}G]}$$

● *P*-rank of $g \in G$, $r_P(g) = \pi_{\leq g \geq} TrId_P$

Conjecture. Classical Bass Conjecture For any finitely generated projective $\mathbb{Z}G$ -module P, $r_P(g) = 0$ for $g \neq 1_G$.

Linell - True for nontrivial torsion elements.

• $HH_0(\mathbb{Z}G) \cong \bigoplus_{x \in \langle G \rangle} \mathbb{Z}$ • $Tr^{HS} : K_0(\mathbb{Z}G) \to HH_0(\mathbb{Z}G)$ • $Tr^{HS} : K_0(\mathbb{C}G) \to HH_0(\mathbb{C}G)$

$$b'(g_0, g_1, \dots, g_n) = \sum_{i=0}^{n-1} (-1)^i (g_0, g_1, \dots, g_i g_{i+1}, \dots, g_n)$$

$$b(g_0, g_1, \dots, g_n) = \sum_{i=0}^{n-1} (-1)^i (g_0, g_1, \dots, g_i g_{i+1}, \dots, g_n)$$

$$+ (-1)^n (g_n g_0, g_1, \dots, g_{n-1})$$

$$t(g_0, g_1, \dots, g_n) = (-1)^n (g_n, g_0, \dots, g_{n-1})$$

$$N = 1 + t + t^2 + \dots + t^n$$

Chern-Connes characters $ch_n^m : K_n(\mathbb{C}G) \to HC_{n+2m}(\mathbb{C}G)$

$$S \circ ch_n^m = ch_n^{m-1}$$

Conjecture. Strong Bass Conjecture For each non-elliptic class x, the image of the composition $\pi_x \circ ch_* : K_*(\mathbb{C}G) \to HC_*(\mathbb{C}G)_x$ is zero. $x \in \langle G \rangle$ satisfies 'nilpotency condition' if $S_x : HC_*(\mathbb{C}G)_x \to HC_{*-2}(\mathbb{C}G)_x$ is nilpotent.

Observation 1. Let x be a non-elliptic conjugacy class satisfying the nilpotency condition. The composition

 $K_n(\mathbb{C}G) \to HC_n(\mathbb{C}G) \xrightarrow{\pi_x} HC_n(\mathbb{C}G)_x$ is zero for all $n \ge 0$. In particular the strong Bass conjecture holds for G.

For $h \in x$, $N_h = G_h/(h)$. Burghelea Decomposition: x non-elliptic $HC_*(\mathbb{C}G)_x \cong H_*(N_h)$. $S_x : HC_*(\mathbb{C}G)_x \to HC_{*-2}(\mathbb{C}G)_x$

$$0 \to (h) \to G_h \to N_h \to 0$$

If each N_h has finite cohomological dimension, then G satisfies the nilpotency condition.

Most basic topological extension, $\ell^1 G$.

Conjecture. ℓ^1 - Bass Conjecture For each non-elliptic conjugacy class x, the image of the composition $K_0(\ell^1 G) \to HC_0(\ell^1 G)_x$ is zero.

 $HC^*(\ell^1G)_x \cong H^*_b(G_h) \otimes HC^*(\mathbb{C})$

 $\mathcal{S}G$ the set of all $\phi: G \to \mathbb{C}$

$$\|\phi\|_{k} := \sum_{g \in G} |\phi(g)| (1 + \ell(g))^{k} < \infty$$

Conjecture. Strong ℓ^1 - Bass Conjecture For each non-elliptic conjugacy class, the image of the composition $\pi_x \circ ch_* : K_*(SG) \to HC_*(SG)_x$ is zero. Is true whenever, for each non-elliptic conjugacy class x, $S_x : HC_*(SG)_x \to HC_{*-2}(SG)_x$ is nilpotent. $C_n(H)$ the set of all finitely supported chains for $H^*(H)$

$$0 \leftarrow C_0(H) \leftarrow C_1(H) \leftarrow C_2(H) \leftarrow \dots$$

 $PC_n(H)$ the superset of those ϕ for which $\sum_{h_1,...,h_n} |\phi(h_1,...,h_n)| (1 + \ell(h_0) + ... + \ell(h_n))^k < \infty.$

$$0 \leftarrow PC_0(H) \leftarrow PC_1(H) \leftarrow PC_2(H) \leftarrow \dots$$

 $HP_*^{\ell}(H)$ In some situations Burghelea decomposition extends to obtain $HC_*(SG)_x \cong HP_*^{\ell_G}(N_h)$. *G* satisfies a polynomial conjugacy problem if for each $x \in \langle G \rangle$ there is P_x such that: $u, v \in x$ then there is $g \in G$ with $g^{-1}ug = v$ such that $\ell(g) \leq P_x(\ell(u) + \ell(v))$.

- Hyperbolic groups
- Pseudo-Anasov classes of Mapping class groups
- Mapping class groups
- 2-step f.g. Nilpotent groups

For these groups, if $HP_*^{\ell_G}(N_h) \cong H_*(N_h)$ and $S_x : HC_*(\mathbb{C}G)_x \to HC_{*-2}(\mathbb{C}G)_x$ nilpotent then $S_x : HC_*(\mathcal{S}G)_x \to HC_{*-2}(\mathcal{S}G)_x$ is nilpotent.

The polynomially bounded conjugacy problem for relatively hyperbolic groups - p. 13/25

G and H_1, H_2, \ldots, H_n satisfy the bounded coset penetration property if for every λ there is a constant $c(\lambda)$ such that if pand q are two $(\lambda, 0)$ -quasi-geodesics without backtracking, starting and ending at the same group element vertices then:

- If p and q both penetrate a coset gH_i , the points at which p and q enter (respectively exit) gH are at a distance no more than $c(\lambda)$ from one another.
- If p penetrates a coset gH_i which is not penetrated by q, then the points where p enters the coset and where pexits the coset are within $c(\lambda)$ from one another.

G and H_1, H_2, \ldots, H_n satisfy the bounded coset penetration property if for every λ there is a constant $c(\lambda)$ such that if pand q are two $(\lambda, 0)$ -quasi-geodesics without backtracking, starting and ending at the same group element vertices then:

- If p and q both penetrate a coset gH_i , the points at which p and q enter (respectively exit) gH are at a distance no more than $c(\lambda)$ from one another.
- If p penetrates a coset gH_i which is not penetrated by q, then the points where p enters the coset and where pexits the coset are within $c(\lambda)$ from one another.

G is relatively hyperbolic with respect to the H_i if the relative graph is hyperbolic and satisfies the bounded coset penetration property.

Lemma. Let u and v be conjugate nontorsion hyperbolic elements of G. There is a constant K_h and a $g \in G$ with $u = g^{-1}vg$ and $\ell_{\hat{\Gamma}}(\hat{g}) \leq K_h(\ell(u) + \ell(v))$. Moreover K_h is independent of u and v. Maher's proof of the Pseudo-Anasov case for Mapping Class groups. **Lemma.** Drutu-Sapir Let g be an element in $\gamma H \gamma^{-1}$, and let x be a point in $G \setminus \gamma H$. Let x_1 be a nearest point projection of x onto γH . Then there exists a uniform constant C such that one of the following situations occur:

1. $d_G(x_1, gx_1) \le C$

2.
$$d_G(x,gx) \ge d_G(x,\gamma H) + \frac{1}{2}d_G(x_1,gx_1) - C$$

This allows us to show:

Lemma. Let u be a nontorsion parabolic element of G, lying in $\gamma H \gamma^{-1}$. There is a linear polynomial K_p , independent of u, such that $\ell_{\hat{\Gamma}}(\hat{\gamma}) \leq K_p(\ell(u))$. We'll use these two results, as well as some elementary estimates of Bumagin, to show

Theorem. If each H_i has polynomially bounded conjugacy problem for each non-elliptic class, then so does G.

Suppose that u and v are nontorsion conjugate elements in G, and denote $L = \ell(u) + \ell(v)$.

- \bullet u and v hyperbolic elements.
- g penetrates no more than 2L + 10c(8L)
- **J** Has relative length no more than K_hL .

 $K_h L \left(2L + 10c(8L) \right)$

Otherwise u and v parabolic.

$$u, v \in H_i$$

• Conjugate in H_i or not.

 $g \in G \setminus H_i$ with $g^{-1}ug = v \in g^{-1}H_ig \cap H_i$

$$\bullet v \in H_i$$
, $u \in G \setminus H_i$.

- If g' an element of minimal relative length such that $g'^{-1}ug' = h \in H_i$ then $\ell(h) \le c(7L)$.
- \checkmark v and h in H_i
- Can assume g has minimal length among all elements conjugating u into H_i

 $\ell_{\hat{\Gamma}}(\hat{g}) \le K_p(\ell(u))$

Geodesic quadrilateral in $\hat{\Gamma}$ with sides [e, u], $\hat{p} = [u, ug]$, [ug, g], and $\hat{q} = [e, g]$. Suppose \hat{p} penetrates fH_j along k. If \hat{q} doesn't penetrate fH_j , $\ell(k) \le 2L + c(2L + 1) + 2c(2)$. Otherwise \hat{q} penetrates fH_j along k'. If k = k', then kconjugates γ_1 and γ_2 in H_j with $\ell(\gamma_i) \le Q(L)$.

 $k \neq k'$.

$\ell(k) \le c(L + \ell_{\hat{\Gamma}}(\hat{g}))$

- *u* and *v* both conjugate into H_i , lie in $G \setminus H_i$.
- There is $h \in H_i$, $\ell(h) \leq c(7L)$
- Product of the two conjugators

Need to show *c* is polynomially bounded!

Lemma. The BCP function $c(\lambda)$ can be chosen to be polynomially bounded.

Lemma. Let (H, d) be a δ -hyperbolic geodesic metric space. For every k and R there is a constant N = N(k, R) such that if p and q are two k-quasigeodesics whose starting points are within R from one-another, and whose ending points are within R from one-another, then p and q lie within the N-neighborhood of one-another. Moreover, N(k, R) can be chosen to be bounded by a polynomial in k and R.