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G - finitely generated group

P - finitely generated ZG-module

P ⊕Q∼= (ZG)n

EndZG (P ⊕Q) ∼= Mn×n (ZG)
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Trace Tr : Mn×n (ZG)→ ZG
[ZG,ZG]

ZG
[ZG,ZG]

∼=
⊕

x∈<G> Z

P -rank of g ∈ G, rP (g) = π<g>TrIdP
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∼=
⊕

x∈<G> Z

P -rank of g ∈ G, rP (g) = π<g>TrIdP

Conjecture. Classical Bass Conjecture For any finitely generated
projective ZG-module P , rP (g) = 0 for g 6= 1G.
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Trace Tr : Mn×n (ZG)→ ZG
[ZG,ZG]

ZG
[ZG,ZG]

∼=
⊕

x∈<G> Z

P -rank of g ∈ G, rP (g) = π<g>TrIdP

Conjecture. Classical Bass Conjecture For any finitely generated
projective ZG-module P , rP (g) = 0 for g 6= 1G.

Linell - True for nontrivial torsion elements.
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HH0(ZG)∼=
⊕

x∈<G> Z

TrHS : K0(ZG)→ HH0(ZG)

TrHS : K0(CG)→ HH0(CG)
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b′(g0, g1, . . . , gn) =
n−1
∑

i=0

(−1)i (g0, g1, . . . , gigi+1, . . . , gn)

b(g0, g1, . . . , gn) =
n−1
∑

i=0

(−1)i (g0, g1, . . . , gigi+1, . . . , gn)

+ (−1)n (gng0, g1, . . . , gn−1)

t(g0, g1, . . . , gn) = (−1)n (gn, g0, . . . , gn−1)

N = 1 + t + t2 + . . . + tn

Chern-Connes characters chm
n : Kn(CG)→ HCn+2m(CG)

S ◦ chm
n = chm−1

n
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Conjecture. Strong Bass Conjecture For each non-elliptic class x, the
image of the composition πx ◦ ch∗ : K∗(CG)→ HC∗(CG)x is zero.

x ∈< G > satisfies ‘nilpotency condition’ if
Sx : HC∗(CG)x → HC∗−2(CG)x is nilpotent.
Observation 1. Let x be a non-elliptic conjugacy class satisfying the
nilpotency condition. The composition

Kn(CG)→ HCn(CG)
πx→ HCn(CG)x is zero for all n ≥ 0. In

particular the strong Bass conjecture holds for G.
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For h ∈ x, Nh = Gh/(h).
Burghelea Decomposition: x non-elliptic
HC∗(CG)x∼= H∗(Nh).
Sx : HC∗(CG)x → HC∗−2(CG)x

0→ (h)→ Gh → Nh → 0

If each Nh has finite cohomological dimension, then G
satisfies the nilpotency condition.
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Most basic topological extension, ℓ1G.
Conjecture. ℓ1 - Bass Conjecture For each non-elliptic conjugacy

class x, the image of the composition K0(ℓ
1G)→ HC0(ℓ

1G)x is zero.

HC∗(ℓ1G)x∼= H∗

b (Gh)⊗HC∗(C)
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SG the set of all φ : G→ C

‖φ‖k :=
∑

g∈G

|φ(g)| (1 + ℓ(g))k <∞

Conjecture. Strong ℓ1 - Bass Conjecture For each non-elliptic
conjugacy class, the image of the composition
πx ◦ ch∗ : K∗(SG)→ HC∗(SG)x is zero.

Is true whenever, for each non-elliptic conjugacy class x,
Sx : HC∗(SG)x → HC∗−2(SG)x is nilpotent.
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Cn(H) the set of all finitely supported chains for H∗(H)

0← C0(H)← C1(H)← C2(H)← . . .

PCn(H) the superset of those φ for which
∑

h1,...,hn
|φ(h1, . . . , hn)| (1 + ℓ(h0) + . . . + ℓ(hn))k <∞.

0← PC0(H)← PC1(H)← PC2(H)← . . .

HP ℓ
∗(H)

In some situations Burghelea decomposition extends to
obtain HC∗(SG)x∼= HP ℓG

∗ (Nh).
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G satisfies a polynomial conjugacy problem if for each
x ∈< G > there is Px such that: u, v ∈ x then there is g ∈ G
with g−1ug = v such that ℓ(g) ≤ Px(ℓ(u) + ℓ(v)).

Hyperbolic groups

Pseudo-Anasov classes of Mapping class groups

Mapping class groups

2-step f.g. Nilpotent groups

For these groups, if HP ℓG

∗ (Nh)∼= H∗(Nh) and
Sx : HC∗(CG)x → HC∗−2(CG)x nilpotent then
Sx : HC∗(SG)x → HC∗−2(SG)x is nilpotent.
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G and H1, H2, . . . , Hn satisfy the bounded coset penetration
property if for every λ there is a constant c(λ) such that if p
and q are two (λ, 0)-quasi-geodesics without backtracking,
starting and ending at the same group element vertices
then:

If p and q both penetrate a coset gHi, the points at
which p and q enter ( respectively exit ) gH are at a
distance no more than c(λ) from one another.

If p penetrates a coset gHi which is not penetrated by q,
then the points where p enters the coset and where p
exits the coset are within c(λ) from one another.
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G and H1, H2, . . . , Hn satisfy the bounded coset penetration
property if for every λ there is a constant c(λ) such that if p
and q are two (λ, 0)-quasi-geodesics without backtracking,
starting and ending at the same group element vertices
then:

If p and q both penetrate a coset gHi, the points at
which p and q enter ( respectively exit ) gH are at a
distance no more than c(λ) from one another.

If p penetrates a coset gHi which is not penetrated by q,
then the points where p enters the coset and where p
exits the coset are within c(λ) from one another.

G is relatively hyperbolic with respect to the Hi if the relative
graph is hyperbolic and satisfies the bounded coset
penetration property.

The polynomially bounded conjugacy problem for relatively hyperbolic groups – p. 14/25



Lemma. Let u and v be conjugate nontorsion hyperbolic elements of G.

There is a constant Kh and a g ∈ G with u = g−1vg and
ℓΓ̂(ĝ) ≤ Kh(ℓ(u) + ℓ(v)). Moreover Kh is independent of u and v.

Maher’s proof of the Pseudo-Anasov case for Mapping
Class groups.
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Lemma. Drutu-Sapir Let g be an element in γHγ−1, and let x be a
point in G \ γH . Let x1 be a nearest point projection of x onto γH .
Then there exists a uniform constant C such that one of the following
situations occur:

1. dG(x1, gx1) ≤ C

2. dG(x, gx) ≥ dG(x, γH) + 1
2dG(x1, gx1)− C

This allows us to show:
Lemma. Let u be a nontorsion parabolic element of G, lying in γHγ−1.
There is a linear polynomial Kp, independent of u, such that

ℓΓ̂(γ̂) ≤ Kp(ℓ(u)).
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We’ll use these two results, as well as some elementary
estimates of Bumagin, to show
Theorem. If each Hi has polynomially bounded conjugacy problem for
each non-elliptic class, then so does G.

Suppose that u and v are nontorsion conjugate elements in
G, and denote L = ℓ(u) + ℓ(v).
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u and v hyperbolic elements.

g penetrates no more than 2L + 10c(8L)

Has relative length no more than KhL.

KhL (2L + 10c(8L))

Otherwise u and v parabolic.
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u, v ∈ Hi

Conjugate in Hi or not.

g ∈ G \Hi with g−1ug = v ∈ g−1Hig ∩Hi
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v ∈ Hi, u ∈ G \Hi.

If g′ an element of minimal relative length such that
g′−1ug′ = h ∈ Hi then ℓ(h) ≤ c(7L).

v and h in Hi

Can assume g has minimal length among all elements
conjugating u into Hi

ℓΓ̂(ĝ) ≤ Kp(ℓ(u))
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Geodesic quadrilateral in Γ̂ with sides [e, u], p̂ = [u, ug],
[ug, g], and q̂ = [e, g].
Suppose p̂ penetrates fHj along k. If q̂ doesn’t penetrate
fHj, ℓ(k) ≤ 2L + c(2L + 1) + 2c(2).
Otherwise q̂ penetrates fHj along k′. If k = k′, then k
conjugates γ1 and γ2 in Hj with ℓ(γi) ≤ Q(L).
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k 6= k′.
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ℓ(k) ≤ c(L + ℓΓ̂(ĝ))
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u and v both conjugate into Hi, lie in G \Hi.

There is h ∈ Hi, ℓ(h) ≤ c(7L)

Product of the two conjugators

Need to show c is polynomially bounded!
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Lemma. The BCP function c(λ) can be chosen to be polynomially
bounded.

Lemma. Let (H, d) be a δ-hyperbolic geodesic metric space. For every
k and R there is a constant N = N(k,R) such that if p and q are two
k-quasigeodesics whose starting points are within R from one-another,
and whose ending points are within R from one-another, then p and q lie
within the N -neighborhood of one-another. Moreover, N(k,R) can be
chosen to be bounded by a polynomial in k and R.
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