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G - finitely generated group

P - finitely generated ZG-module
Po Q= (ZG)"

Endze (P ® Q) = Mpxn (ZG)
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" 1ZG,ZG]

® Trace Tr : Myxn (ZG)

72G  ~
® aaa = Drecas 2

® P-rankof g € G, rp(g) = m<g>Trldp
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" 1ZG,ZG]

® Trace Tr : Myxn (ZG)

72G  ~
® aaa = Drecas 2

® P-rankof g € G, rp(g) = m<g>Trldp

Conjecture. Classical Bass Conjecture For any finitely generated
projective ZG-module P, rp(g) = 0 for g # 1¢.
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® Trace Tr: Myxn (ZG) — W%G]

72G  ~
® aaa = Drecas 2

® P-rankof g € G, rp(g) = m<g>Trldp

Conjecture. Classical Bass Conjecture For any finitely generated
projective ZG-module P, rp(g) = 0 for g # 1¢.

Linell - True for nontrivial torsion elements.
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o Tri5: Ky(ZG) — HHy(ZG)
N TTHS : K()((CG) — HH()(CG)
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fConjecture. Strong Bass Conjecture For each non-elliptic class x, the
image of the composition 7, o chy : K4(CG) — HC,(CG), is zero.

r €< G > satisfies ‘nilpotency condition’ if
Sy HC,(CG), — HC_5(CG), Is nilpotent.

Observation 1. Let x be a non-elliptic conjugacy class satisfying the
nilpotency condition. The composition

K,(CG) — HC,(CG) 3 HC,(CQG), is zero forall n. > 0. In
particular the strong Bass conjecture holds for (5.
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fForhe:;c, Ny = Gy /(h). T

Burghelea Decomposition: x non-elliptic
HC(CG), = H(Ny).
Sy HC,(CG), — HC—2(CG),

0—(h) - Gp— Nj — 0

If each NV, has finite cohomological dimension, then GG
satisfies the nilpotency condition.
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Most basic topological extension, ¢!G.

Conjecture. ¢! - Bass Conjecture For each non-elliptic conjugacy
class z, the image of the composition Ky(¢1G) — HCy(¢*G), is zero.

HC*(1'G), = H} (G) ® HC*(C)
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SGthesetofallg: G —C T

Il = lo(g)] (1+£(g))" < oo

gelG

Conjecture. Strong ¢! - Bass Conjecture For each non-elliptic
conjugacy class, the image of the composition

Ty © chy : Ky (SG) — HCL(SG), is zero.

Is true whenever, for each non-elliptic conjugacy class =,
Sy HC(SG)y — HC,—2(SG), IS nilpotent.
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Cn(H) the set of all finitely supported chains for H*(H)
0« Co(H)«— Ci1(H) «— Co(H) « ...

PC,,(H) the superset of those ¢ for which
D iy, [0, ) [ (L4 £(Ro) + ... + 0(hp))* < .

0« PCo(H) «— PC{(H) +— PCy(H) « ...
HP;(H)

In some situations Burghelea decomposition extends to
obtain HC,(SG), = HP!S(Ny,).
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G

satisfies a polynomial conjugacy problem if for each

-

r €< G > there is P, such that: u,v € x thenthereis g € G
with g~ 'ug = v such that ¢(g) < P.(4(u) + £(v)).

9o
9o
9o
9o

Hyperbolic groups

Pseudo-Anasov classes of Mapping class groups

Mapping class groups
2-step f.g. Nilpotent groups

For these groups, if HP'(N;,) = H,(N,) and
Sy : HC.(CG), — HCy_9(CG), nilpotent then
Sy : HCW(SG) — HC._2(SG), IS nilpotent.

o
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G and Hy, Ho, ..., H, satisfy the bounded coset penetration
property if for every X there is a constant ¢(\) such that if p
and g are two (), 0)-quasi-geodesics without backtracking,
starting and ending at the same group element vertices
then:

# If p and ¢ both penetrate a coset ¢H;, the points at
which p and ¢ enter ( respectively exit ) gH are at a
distance no more than ¢(\) from one another.

# If p penetrates a coset gH; which is not penetrated by ¢,
then the points where p enters the coset and where p
exits the coset are within ¢(\) from one another.
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fG and Hy, Ho, ..., H, satisfy the bounded coset penetration T
property if for every X there is a constant ¢(\) such that if p
and g are two (), 0)-quasi-geodesics without backtracking,
starting and ending at the same group element vertices
then:

# If p and ¢ both penetrate a coset ¢H;, the points at
which p and ¢ enter ( respectively exit ) gH are at a
distance no more than ¢(\) from one another.

# If p penetrates a coset gH; which is not penetrated by ¢,
then the points where p enters the coset and where p
exits the coset are within ¢(\) from one another.

G Is relatively hyperbolic with respect to the H; if the relative
raph is hyperbolic and satisfies the bounded coset J

9
Lpenetration property.
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Lemma. Letu and v be conjugate nontorsion hyperbolic elements of (.

There is a constant K, and a g € GG with u = g_lvg and
l+(9) < Kp(€(u) 4 £(v)). Moreover Kj, is independent of u and v.

Maher’s proof of the Pseudo-Anasov case for Mapping
Class groups.
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Lemma. Drutu-Sapir Let g be an elementin yH~~ ", and let x be a
pointin GG \ ~vH . Let x1 be a nearest point projection of x onto y/.

Then there exists a uniform constant C' such that one of the following
situations occur:

1. dg(z1,971) < C
2. dg(x,9x) > dg(x,vH) + %dg(xl,gajl) —C

This allows us to show:

Lemma. Let u be a nontorsion parabolic element of &, lying in VHV_l.
There is a linear polynomial /&, independent of u, such that

6:(3) < Kypll(u).
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We’'ll use these two results, as well as some elementary
estimates of Bumagin, to show

Theorem. If each H; has polynomially bounded conjugacy problem for
each non-elliptic class, then so does G.

Suppose that « and v are nontorsion conjugate elements in
G, and denote L = ¢(u) + ¢(v).
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# v and v hyperbolic elements.
® ¢ penetrates no more than 2L + 10¢(8L)
# Has relative length no more than K, L.

KpL (2L + 10c¢(8L))
Otherwise u and v parabolic.
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® uve H;
# Conjugate in H; or not.

ge G \ H; with g_lug =V E g_lHig N H;

o |

The polvnomiallv bounded coniuaacyv problem for relativelv hvperbolic arouns — p. 19/25



UEHZ',UEG\HZ'. —‘

If ¢ an element of minimal relative length such that
g tug’ = h € H; then ¢(h) < ¢(7L).

vand hin H;

Can assume ¢ has minimal length among all elements
conjugating u into H;

lp(9) < Kp(l(u))

|
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Geodesic quadrilateral in I with sides [e, u], p = [u, ug],
ug, gl, and ¢ = [e, g].

Suppose p penetrates fH; along k. If ¢ doesn’t penetrate
fHj, U(k) <2L+c(2L + 1) + 2¢(2).

Otherwise ¢ penetrates fH,; along £’. If k = £/, then k
conjugates v; and 2 in H; with ¢(v;) < Q(L).
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# « and v both conjugate into H;, lie in G\ H;.
® Thereis h € H;, {(h) < ¢(7L)
# Product of the two conjugators

Need to show c Is polynomially bounded!
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Lemma. The BCP function c()\) can be chosen to be polynomially
bounded.

Lemma. Let (H, d) be a d-hyperbolic geodesic metric space. For every
k and R there is a constant N = N (k, R) such that if p and ¢ are two
k-quasigeodesics whose starting points are within X from one-another,
and whose ending points are within /2 from one-another, then p and ¢ lie
within the /V-neighborhood of one-another. Moreover, N (k, R) can be
chosen to be bounded by a polynomial in £ and R.
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