Exact families of maps and embedding relative property A groups

Bobby Ramsey (joint with Ronghui Ji and Crichton Ogle)

The Ohio State University

Sept. 29, 2013

1/26

Sept. 29, 2013

All metric spaces in this talk are uniformly discrete with bounded geometry. All groups are countable and discrete.

Definition

(X, d) has bounded geometry if for every r > 0 there is an N = N(r) > 0 such that for all $x \in X$, $|B_r(x)| < N$.

Definition

A coarse embedding of (X, d) into a Hilbert space \mathcal{H} is a map $\phi : X \to \mathcal{H}$ for which there exist nondecreasing $\rho_{-}, \rho_{+} : [0, \infty) \to (0, \infty)$, with $\lim_{t\to\infty} \rho_{\pm}(t) = \infty$, and such that for all $x, y \in X$

$$\rho_-(d(x,y)) \le \|\phi(x) - \phi(y)\| \le \rho_+(d(x,y)).$$

(X, d) is coarsely embeddable if such a coarse embedding exists.

イロト イヨト イヨト イヨト

Definition

A coarse embedding of (X, d) into a Hilbert space \mathcal{H} is a map $\phi : X \to \mathcal{H}$ for which there exist nondecreasing $\rho_{-}, \rho_{+} : [0, \infty) \to (0, \infty)$, with $\lim_{t\to\infty} \rho_{\pm}(t) = \infty$, and such that for all $x, y \in X$

$$\rho_-(d(x,y)) \leq \|\phi(x) - \phi(y)\| \leq \rho_+(d(x,y)).$$

(X, d) is coarsely embeddable if such a coarse embedding exists.

Theorem (G. Yu, 2000)

If X is coarsely embeddable, then the coarse Baum-Connes conjecture holds for X.

イロト イヨト イヨト

Definition

A coarse embedding of (X, d) into a Hilbert space \mathcal{H} is a map $\phi : X \to \mathcal{H}$ for which there exist nondecreasing $\rho_{-}, \rho_{+} : [0, \infty) \to (0, \infty)$, with $\lim_{t\to\infty} \rho_{\pm}(t) = \infty$, and such that for all $x, y \in X$

$$\rho_-(d(x,y)) \le \|\phi(x) - \phi(y)\| \le \rho_+(d(x,y)).$$

(X, d) is coarsely embeddable if such a coarse embedding exists.

Theorem (G. Yu, 2000)

If X is coarsely embeddable, then the coarse Baum-Connes conjecture holds for X.

$$\lim_{d\to\infty} K_*(P_d(X)) \to K_*(C^*(X))$$

Coarse embeddability has many consequences

- Strong Novikov conjecture
- Gromov-Lawson-Rosenberg conjecture
- Zero-in-the-spectrum conjecture

(日) (同) (三) (三)

Coarse embeddability has many consequences

- 4 同 ト 4 ヨ ト 4 ヨ

Sept. 29, 2013

4 / 26

- Strong Novikov conjecture
- Gromov-Lawson-Rosenberg conjecture
- Zero-in-the-spectrum conjecture

Question

How to determine if a space is coarsely embeddable?

Property A

Definition

(X, d) has property A if for all R > 0 and $\epsilon > 0$, there exists nonempty finite subsets $\{A_x \subset X \times \mathbb{N}\}_{x \in X}$ and S > 0 such that

• If
$$(y, n) \in A_x$$
, then $d(y, x) < S$.

• If
$$d(x, y) < R$$
 then $\frac{|A_x \Delta A_y|}{|A_x|} < \epsilon$.

(日) (同) (三) (三)

Property A

Definition

(X, d) has property A if for all R > 0 and $\epsilon > 0$, there exists nonempty finite subsets $\{A_x \subset X \times \mathbb{N}\}_{x \in X}$ and S > 0 such that

(日) (周) (三) (三)

Sept. 29, 2013

5 / 26

• If
$$(y, n) \in A_x$$
, then $d(y, x) < S$.
• If $d(x, y) < R$ then $\frac{|A_x \Delta A_y|}{|A_x|} < \epsilon$.

Theorem (G. Yu, 2000) If X has property A, then X is coarsely embeddable.

Equivalent conditions

Lemma (Dadarlat-Guentner, 2003)

X is coarsely embeddable if and only if for every R > 0 and $\epsilon > 0$ there is a map $\xi : X \to \mathcal{H}$, $x \mapsto \xi_x$ such that $\|\xi_x\| = 1$ for all $x \in X$ and such that

•
$$\sup \{ \|\xi_x - \xi_y\| : d(x, y) < R \} < \epsilon$$

•
$$\lim_{S\to\infty}\sup\left\{\left|\langle\xi_x,\xi_y\rangle\right|:d(x,y)>S\right\}=0$$

Lemma (Tu, 2001)

X has property A if and only if for every R > 0 and $\epsilon > 0$ there is a map $\xi : X \to \mathcal{H}, x \mapsto \xi_x$ such that $\|\xi_x\| = 1$ for all $x \in X$ and such that • d(x, y) < R implies $\|\xi_x - \xi_y\| < \epsilon$ • d(x, y) > S implies $\langle \xi_x, \xi_y \rangle = 0$

(日) (周) (三) (三)

Equivalent conditions

- X has property A
- The uniform Roe algebra $C_u^*(X)$ is nuclear
- If X = G is a group, these are equivalent to the following.
 - G acts amenably on its Stone-Cech compactification, βG. (The reduced crossed product is C^{*}_u(G))
 - $C_r^*(G)$ is exact
 - L(G) is weakly exact

(日) (同) (三) (三)

Spaces with property A

- Amenable groups
- Metric spaces with finite asymptotic dimension (Higson, Roe)
- Gromov-hyperbolic spaces (Roe)
- Relatively hyperbolic groups (Ozawa)
- One-relator groups (Guentner)
- Mapping class groups (Kida)
- Linear groups (Guentner, Higson, Weinberger)
- Discrete subgroup of a connected Lie group (Anantharaman-Delarcohe, Renault)
- Finite dimensional CAT(0) cube complexes (Brodzki, Campbell, Guentner, Niblo, Wright)

(日) (同) (三) (三)

Spaces with property A

- Amenable groups
- Metric spaces with finite asymptotic dimension (Higson, Roe)
- Gromov-hyperbolic spaces (Roe)
- Relatively hyperbolic groups (Ozawa)
- One-relator groups (Guentner)
- Mapping class groups (Kida)
- Linear groups (Guentner, Higson, Weinberger)
- Discrete subgroup of a connected Lie group (Anantharaman-Delarcohe, Renault)
- Finite dimensional CAT(0) cube complexes (Brodzki, Campbell, Guentner, Niblo, Wright)

Coarsely embeddable but without property A

Recently Arzhantseva, Guentner, and Spakula have constructed examples of coarsely embeddable bounded geometry metric spaces which do not have property A.

B. Ramsey (OSU)

Spaces with property A

- Amenable groups
- Metric spaces with finite asymptotic dimension (Higson, Roe)
- Gromov-hyperbolic spaces (Roe)
- Relatively hyperbolic groups (Ozawa)
- One-relator groups (Guentner)
- Mapping class groups (Kida)
- Linear groups (Guentner, Higson, Weinberger)
- Discrete subgroup of a connected Lie group (Anantharaman-Delarcohe, Renault)
- Finite dimensional CAT(0) cube complexes (Brodzki, Campbell, Guentner, Niblo, Wright)

Coarsely embeddable but without property A

The only groups known to not have property A (Gromov's Monster groups) do not coarsely embed.

Dadarlat-Guentner

Theorem (DG, 2003)

Let $0 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 0$ be an extension of countable discrete groups. If N is coarsely embeddable and Q has property A, then G is coarsely embeddable.

- **∢ /⊒ ▶ ∢ 글 ▶ ∢**

Dadarlat-Guentner

Theorem (DG, 2003)

Let $0 \rightarrow N \rightarrow G \rightarrow Q \rightarrow 0$ be an extension of countable discrete groups. If N is coarsely embeddable and Q has property A, then G is coarsely embeddable.

How to generalize this?

Weaken Q to be only coarsely embeddable? The equivariant version of this is not true. ($\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})$ is not a-T-menable, even though \mathbb{Z}^2 and $SL_2(\mathbb{Z})$ are.) Remove the normality condition!

(日) (同) (三) (三)

Relative property A

Definition

A finitely generated group G has relative property A with respect to the family of subgroups $\mathfrak{H} = \{H_1, H_2, \ldots, H_k\}$ if for all R > 0 and $\epsilon > 0$, there exists nonempty finite subsets $\{A_g \subset G/\mathfrak{H} \times \mathbb{N}\}_{g \in G}$ and S > 0 such that

• If
$$(g'H_j, n) \in A_g$$
, then $d(g, g'H_j) < S$.

• If
$$d(g,g') < R$$
 then $\frac{|A_g \Delta A_{g'}|}{|A_g|} < \epsilon$.

$$(G/\mathfrak{H} = \sqcup_{i=1}^k G/H_i)$$

Sept. 29, 2013

Theorem (JOR, 2012)

 (G, \mathfrak{H}) has relative property A if and only if exists a sequence of weak*-continuous $\xi_n : \beta G \to \operatorname{Prob}(G/\mathfrak{H})$ such that for all $g \in G$,

$$\lim_{n\to\infty}\sup_{x\in\beta G}\|g\xi_n(x)-\xi_n(gx)\|_{\ell^1}=0.$$

(日) (同) (三) (三)

Sept. 29, 2013

Theorem (JOR, 2012)

 (G, \mathfrak{H}) has relative property A if and only if exists a sequence of weak*-continuous $\xi_n : \beta G \to \operatorname{Prob}(G/\mathfrak{H})$ such that for all $g \in G$,

$$\lim_{n\to\infty}\sup_{x\in\beta G}\|g\xi_n(x)-\xi_n(gx)\|_{\ell^1}=0.$$

Corollary

Suppose $N \triangleleft G$. If G/N has property A, then G has relative property A with respect to N.

- 4 同 6 4 日 6 4 日 6

Sept. 29, 2013

Theorem (JOR, 2012)

 (G, \mathfrak{H}) has relative property A if and only if exists a sequence of weak*-continuous $\xi_n : \beta G \to \operatorname{Prob}(G/\mathfrak{H})$ such that for all $g \in G$,

$$\lim_{n\to\infty}\sup_{x\in\beta G}\|g\xi_n(x)-\xi_n(gx)\|_{\ell^1}=0.$$

Corollary

Suppose $N \triangleleft G$. If G/N has property A, then G has relative property A with respect to N.

Corollary

Suppose G acts cocompactly on X. If X has property A, then G has relative property A with respect to the stabilizer of any point.

B. Ramsey (OSU)

Sept. 29, 2013 11 / 26

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Brodzki, Niblo, Nowak, and Wright have recently characterized property A through bounded cohomology analogous to Johnson's characterization of amenability.

For each G they identify a collection of Banach G-modules, $\mathcal{N}(G)$, with the following property.

Theorem (BNNW, 2012)

G has property *A* if and only if $H_b^p(G; V^*) = 0$ for all $p \ge 1$ and every $V \in \mathcal{N}(G)$.

イロト 不得下 イヨト イヨト 二日

Theorem (JOR, 2011)

For every Banach G-module M, there are relative bounded cohomology groups $H_b^*(G, \mathfrak{H}; M)$ fitting into the long-exact sequence:

$$\cdots \to H^k_b(G; M) \to H^k_b(\mathfrak{H}; M) \to H^{k+1}_b(G, \mathfrak{H}; M) \to H^{k+1}_b(G; M) \to \ldots$$

Here, $H_b^0(\mathfrak{H}; V^*) = \prod_{H \in \mathfrak{H}} H_b^0(H; V^*).$

Theorem (JOR, 2011)

For every Banach G-module M, there are relative bounded cohomology groups $H_b^*(G, \mathfrak{H}; M)$ fitting into the long-exact sequence:

$$\cdots \to H^k_b(G; M) \to H^k_b(\mathfrak{H}; M) \to H^{k+1}_b(G, \mathfrak{H}; M) \to H^{k+1}_b(G; M) \to \ldots$$

Here,
$$H^0_b(\mathfrak{H}; V^*) = \prod_{H \in \mathfrak{H}} H^0_b(H; V^*).$$

Theorem (JOR, 2012)

 (G, \mathfrak{H}) has relative property A if and only if $H_b^0(\mathfrak{H}; V^*) \to H_b^1(G, \mathfrak{H}; V^*)$ is surjective for every $V \in \mathcal{N}(G)$.

Corollary

If (G, \mathfrak{H}) has relative property A and if each $H \in \mathfrak{H}$ has property A, then G has property A.

(日) (同) (三) (三)

Sept. 29, 2013

Corollary

If (G, \mathfrak{H}) has relative property A and if each $H \in \mathfrak{H}$ has property A, then G has property A.

Corollary

If $0 \to N \to G \to Q \to 0$ with Q and N with property A, then G has property A.

(日) (同) (三) (三)

Sept. 29, 2013

Corollary

If G acts cocompactly on a metric space X with property A, and there is an $x_0 \in X$ whose stabilizer has property A, the G has property A.

- Groups acting on finite dimensional CAT(0)-cube complexes with property A stabilizer.
- Fundamental groups of finite graphs of groups with property A vertex groups.

On to metric spaces

For H < G, we recast relative property A of (G, H) as a property of the map $\pi : G \to G/H$.

(日) (四) (王) (王) (王)

On to metric spaces

For H < G, we recast relative property A of (G, H) as a property of the map $\pi : G \to G/H$.

(G, H) has relative property A if and only if for every R > 0 and $\epsilon > 0$ there exists an S > 0 and a map $\xi : X \to \ell^2(G/H)$, with $\|\xi_x\| = 1$ for all $x \in X$, satisfying the following.

- For all $g, g' \in G$ if d(g, g') < R, then $\|\xi_g \xi_{g'}\| < \epsilon$.
- Por all g ∈ G, supp ξ_g ⊂ π (B_S(g)), where B_S(g) denotes the ball of radius S in G centered at g.

イロト イポト イヨト イヨト 二日

Sept. 29, 2013

Exact families of maps

Suppose (X, d) is a metric space. For a finite family of sets, $\{Y_i\}_{i=1}^n$, let $\mathcal{Y} = \bigcup_{i=1}^n Y_i$ denote the disjoint union.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … の々で

Exact families of maps

Suppose (X, d) is a metric space. For a finite family of sets, $\{Y_i\}_{i=1}^n$, let $\mathcal{Y} = \bigsqcup_{i=1}^n Y_i$ denote the disjoint union.

Definition

A family of set maps $\{\phi_i : X \to Y_i\}_{i=1}^n$ is an *exact family of maps* if for every $R, \epsilon > 0$ there exists an S > 0 and a map $\xi : X \to \ell^2(\mathcal{Y})$, with $\|\xi_x\| = 1$ for all $x \in X$, and satisfying the following.

- For all $x, y \in X$ if $d(x, y) \leq R$, then $\|\xi_x \xi_y\| \leq \epsilon$.
- Solution For all *x* ∈ *X*, supp $\xi_x ⊂ \cup_i \phi_i (B_S(x))$, where $B_S(x)$ denotes the ball of radius *S* in *X* centered at *x*.

イロト イポト イヨト イヨト 二日

Exact families of maps

Suppose (X, d) is a metric space. For a finite family of sets, $\{Y_i\}_{i=1}^n$, let $\mathcal{Y} = \bigsqcup_{i=1}^n Y_i$ denote the disjoint union.

Definition

A family of set maps $\{\phi_i : X \to Y_i\}_{i=1}^n$ is an *exact family of maps* if for every $R, \epsilon > 0$ there exists an S > 0 and a map $\xi : X \to \ell^2(\mathcal{Y})$, with $\|\xi_x\| = 1$ for all $x \in X$, and satisfying the following.

- For all $x, y \in X$ if $d(x, y) \leq R$, then $\|\xi_x \xi_y\| \leq \epsilon$.
- Solution For all *x* ∈ *X*, supp $\xi_x ⊂ \cup_i \phi_i (B_S(x))$, where $B_S(x)$ denotes the ball of radius *S* in *X* centered at *x*.

Lemma

 (G, \mathfrak{H}) has relative property A if and only if $\{\pi_i : G \to G/H_i | H_i \in \mathfrak{H}\}$ is an exact family of maps.

イロト イポト イヨト イヨト

Revisiting property A and coarse embeddability

Definition (Dadarlat-Guenter, 2007)

A family $\{(X_j, d_j)\}_{j \in \mathcal{J}}$ of metric spaces is *equi-coarsely embeddable* if for every R > 0 and $\epsilon > 0$ there is a family of Hilbert space valued maps $\xi_j : X_j \to \mathcal{H}$ with $\|\xi_j(x)\| = 1$ for all $x \in X_j$ and satisfying:

• For all
$$j \in \mathcal{J}$$
 and all $x, y \in X_j$, if $d_j(x, y) < R$, then $\|\xi_j(x) - \xi_j(y)\| < \epsilon$.

 $lim_{S \to \infty} \sup_{j \in \mathcal{J}} \sup \{ |\langle \xi_j(x), \xi_j(y) \rangle| : d(x, y) < S, x, y \in X_j \} = 0.$

・ 何 ト ・ ヨ ト ・ ヨ ト

Sept. 29, 2013

Revisiting property A and coarse embeddability

Definition

A family $\{(X_j, d_j)\}_{j \in \mathcal{J}}$ of metric spaces have *uniform property* A if for every R > 0 and $\epsilon > 0$ there is a family of Hilbert space valued maps $\xi_j : X_j \to \mathcal{H}$, with $\|\xi_j(x)\| = 1$ for all $x \in X_j$, and an S > 0 and satisfying:

• For all
$$j \in \mathcal{J}$$
 and all $x, y \in X_j$, if $d_j(x, y) < R$, then $\|\xi_j(x) - \xi_j(y)\| < \epsilon$.

3 For all $j \in \mathcal{J}$ and all $x, y \in X_j$, $\langle \xi_j(x), \xi_j(y) \rangle = 0$ if d(x, y) > S.

・ 同 ト ・ ヨ ト ・ ヨ ト

Sept. 29, 2013

Theorem

Suppose (X, d) is a metric space and $\{\phi_i : X \to Y_i\}_{i=1}^n$ is an exact family of maps. If $\{\phi_i(w)^{-1} : w \in Y_i, i = 1, ..., n\}$ has uniform property A, then X has property A.

Sept. 29, 2013

Theorem

Suppose (X, d) is a metric space and $\{\phi_i : X \to Y_i\}_{i=1}^n$ is an exact family of maps. If $\{\phi_i(w)^{-1} : w \in Y_i, i = 1, ..., n\}$ has uniform property A, then X has property A.

Outline of proof for one map $\phi: X \to Y$

For $x \in X$ and $w \in Y$, let $\eta(x, w)$ be a point in $\phi^{-1}(w)$ closest to x. For all $x, y \in X$ and $w \in Y$,

$$d(x,y) \leq d(\eta(x,w),\eta(y,w)) + d(x,\phi^{-1}(w)) + d(y,\phi^{-1}(w)) \ d(\eta(x,w),\eta(y,w)) \leq d(x,y) + d(x,\phi^{-1}(w)) + d(y,\phi^{-1}(w)).$$

Sept. 29, 2013

Fix $R, \epsilon > 0$.

There is a map $\alpha: X \to \ell^2(Y)$, with each $\|\alpha_x\| = 1$, and an $S_X > 0$ such that

- For each $x, y \in X$, if $d(x, y) \leq R$, then $|1 \langle \alpha_x, \alpha_y \rangle| < \frac{\epsilon}{2}$.
- For each $x \in X$, if $\alpha_x(w) \neq 0$ then $w \in \phi(B_{S_X}(x))$.

There is an $S_Y > 0$, a Hilbert space \mathcal{H} , and for each $w \in Y$, a $\beta_w : \phi^{-1}(w) \to \mathcal{H}$ with $\|\beta_w(s)\| = 1$ for all $s \in \phi^{-1}(w)$, and such that for all $s, t \in \phi^{-1}(w)$

- If $d(s,t) < 2S_X + R$, then $|1 \langle \beta_w(s), \beta_w(t) \rangle| \le \frac{\epsilon}{2}$.
- If $d(s,t) > S_Y$, then $\langle \beta_w(s), \beta_w(t) \rangle = 0$.

イロト イヨト イヨト

Define $\xi: X \to \ell^2(Y, \mathcal{H})$ by

 $\xi_x(w) = \alpha_x(w)\beta_w(\eta(x,w)), \text{ for all } x \in X, w \in Y.$

If $x, y \in X$ with $d(x, y) \leq R$, then

$$\begin{aligned} |1 - \langle \xi_x, \xi_y \rangle| &\leq \left| \sum_{w \in \mathcal{Y}} \left(1 - \langle \beta_{i_w}(\eta(x, w)), \beta_{i_w}(\eta(y, w)) \rangle \right) \alpha_x(w) \alpha_y(w) \right. \\ &+ |1 - \langle \alpha_x, \alpha_y \rangle|. \end{aligned}$$

The first sum is over $w \in \phi_i(B_{S_X}(x)) \cap \phi_i(B_{S_X}(y))$ and is bounded by

 $\sup\left\{\left|1-\langle\beta_{i_w}(\eta(x,w)),\beta_{i_w}(\eta(y,w))\rangle\right|:w\in\phi_i(B_{\mathcal{S}_X}(x))\cap\phi_i(B_{\mathcal{S}_X}(y))\right\}.$

Each such w satisfies $d(\eta(x, w), \eta(y, w)) \le R + 2S_X$, this sum is bounded by $\frac{\epsilon}{2}$.

The second term is bounded by $\frac{\epsilon}{2}$.

B. Ramsey (OSU)

For
$$d(x, y) > 2S_X + S_Y$$
,

$$\langle \xi_x, \xi_y \rangle = \sum_{w \in \mathcal{Y}} \alpha_x(w) \alpha_y(w) \langle \beta_{i_w}(\eta(x, w)), \beta_{i_w}(\eta(y, w)) \rangle.$$

The sum is over $w \in \bigcup_i (\phi_i(B_{S_X}(x)) \cap \phi_i(B_{S_X}(y)))$. For $w \in \phi_i(B_{S_X}(x)) \cap \phi_i(B_{S_X}(y))$,

$$d(\eta(x,w),\eta(y,w)) \ge d(x,y) - d(x,\phi_i^{-1}(w)) - d(y,\phi_i^{-1}(w)) > S_Y$$

Thus $\langle \xi_x, \xi_y \rangle = 0.$

(日) (周) (三) (三)

Theorem

Let $\{\phi_i : X \to Y_i\}_{i=1}^n$ be an exact family of maps. If $\{\phi_i(w)^{-1} : w \in Y_i, i = 1, ..., n\}$ is an equi-coarsely embeddable family of metric spaces, then X is coarsely embeddable.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Sept. 29, 2013

Theorem

Let $\{\phi_i : X \to Y_i\}_{i=1}^n$ be an exact family of maps. If $\{\phi_i(w)^{-1} : w \in Y_i, i = 1, ..., n\}$ is an equi-coarsely embeddable family of metric spaces, then X is coarsely embeddable.

Corollary

Let (G, \mathfrak{H}) have relative property A. If each $H \in \mathfrak{H}$ is coarsely embeddable, then G is coarsely embeddable.

イロト イヨト イヨト

Sept. 29, 2013

Relative coarse embeddability?

In the last theorem, an exact family of maps is more than is actually needed.

< ロ > < 同 > < 三 > < 三

Relative coarse embeddability?

In the last theorem, an exact family of maps is more than is actually needed.

Definition

2

A family of set maps $\{\phi_i : X \to Y_i\}_{i=1}^n$ is a weakly exact family of maps if for every $R, \epsilon > 0$ there exists a map $\xi : X \to \ell^2(\mathcal{Y})$, with $\|\xi_x\| = 1$ for all $x \in X$, satisfying the following:

• For all
$$x, y \in X$$
 if $d(x, y) < R$, then $\|\xi_x - \xi_y\| < \epsilon$.

$$\lim_{S\to\infty}\sup\left\{\sum_{w\notin\cup_i(\phi_i(B_S(x))\cap\phi_i(B_S(y)))}|\xi_x(w)\xi_y(w)|\right\}=0.$$

Relative coarse embeddability?

Theorem

Let $\{\phi_i : X \to Y_i\}_{i=1}^n$ be a weakly exact family of maps. X is coarsely embeddable if and only if $\{\phi_i(w)^{-1} : w \in Y_i, i = 1, ..., n\}$ is an equi-coarsely embeddable family of metric spaces.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖