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Abstract. We give different short proofs for a result proved by C. Mueller
in [9]: Over an algebraically closed field pairs of n×n matrices whose product

is symmetric form an irreducible, reduced, and complete intersection variety of
dimension (3n2 +n)/2. Our work is connected to the work of Brennan, Pinto,

and Vasconcelos in [2].

1. Introduction and notation

A central research theme in classical algebraic geometry is to study the scheme
defined by a given ideal in a polynomial ring in order to determine whether it
has desirable properties such as being normal, nonsingular, complete intersection,
smooth, Gorenstein, Cohen-Macaulay, irreducible, or reduced. Many interesting
results have been obtained in connection to such questions. However, there are
also long-standing open problems that continue to generate interest and provide
motivation for further research in this area. One of these open problems is the
following

Conjecture 1.1 (M. Artin, M. Hochster). Let X = (xij) and Y = (yij) be square
n× n matrices in 2n2 indeterminates and let I be the ideal generated by entries of
XY − Y X in the polynomial ring R = k[x11, . . . , xnn, y11, . . . , ynn], where k is an
algebraically closed field. Then Spec (R/I) is reduced, and Cohen-Macaulay.

It is easy to show Spec (R/I) is Cohen-Macaulay when n = 1 and n = 2. How-
ever, Macaulay, see [1], was used to completely establish this when n = 3 (though
several partial results were obtained in [12]), and Macaulay 2, see [5], was used to
establish this when n = 4.

Several authors, including T. Motzkin and O. Taussky [8], M. Gerstenhaber [4],
and R. Guralnick [6] have shown that commuting pairs of n×n matrices with entries
in k, regarded as points in the 2n2-dimensional affine space, form an irreducible
variety of dimension n2 + n. Since the coordinate ring of this variety is R/ rad(I),
the scheme Spec (R/ rad(I)) is referred to as the commuting variety in the literature.

In [2] a special commuting variety is studied, the variety of commuting pairs of
symmetric matrices. Partially inspired by this work, we consider the ideal J gener-
ated by entries ofXY−Y tXt in the polynomial ringR = k[x11, . . . , xnn, y11, . . . , ynn],
where Xt is the transpose of a matrix X. This ideal was studied by C. Mueller in [9].
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As a special case of his results, he finds that the scheme Spec (R/J) is reduced, ir-
reducible and a complete intersection of dimension (3n2 + n)/2. In this paper we
use completely different methods to give proofs of these results. We should note
that closed points of Spec (R/J) can be identified with pairs of n×n matrices over
k, whose product is symmetric.

In what follows, unless otherwise stated k will be an arbitrary field. We let
Mn(k) be the affine space of all n× n matrices with entries in k and Sn(k) be the
affine space of all symmetric n × n matrices with entries in k. We will use the
notation Xt to denote the transpose of a matrix X.

2. Pairs of matrices whose product is symmetric

We begin by showing that if k is algebraically closed, pairs of n×nmatrices whose
product is symmetric regarded as points in the 2n2-dimensional affine space form
an irreducible variety. We will use an idea similar to the proof of [6, Theorem 2].
First we need a few elementary facts.

Lemma 2.1. Let A ∈Mn(k). Then there is a nonsingular symmetric n×n matrix
T such that AT is symmetric.

Proof. This is essentially proved in [11, Theorem 1]. By that theorem there is a
nonsingular symmetric matrix T , such that AT = TAt. Since T is symmetric, the
previous equality shows that AT is symmetric. �

Proposition 2.2. Let B ∈Mn(k), and T be a nonsingular n×n matrix. Let x be
an indeterminate. Then det (B + xT ) is not identically zero.

Proof. Suppose det (B + xT ) is identically zero. Then columns of the matrix B+xT
are linearly dependent. Hence, there are scalars α1, . . . , αn, not all zero, such that

n∑
i=1

αiVB,i = −x
n∑

i=1

αiVT,i,

where {VB,i} and {VT,i} are columns of B and T , respectively. Since this identity
holds for all x ∈ k, we must have

n∑
i=1

αiVT,i = 0,

which is a contradiction since T is nonsingular and its columns are linearly inde-
pendent. �

Lemma 2.3. Let A,B ∈ Mn(k). If det(B) 6= 0 and AB is symmetric, then there
is a symmetric matrix S ∈ Sn(k) such that A = BtS.

Proof. To say AB is symmetric means AB = BtAt. Multiplying both sides of this
equality by B−1 from the right, we obtain

A = BtAtB−1.

We end the proof by showing that S := AtB−1 is a symmetric matrix. To see this
multiply both sides of AB = BtAt by B−1 on the right, and (B−1)t on the left.
This gives us (B−1)tA = AtB−1, hence St = S. �
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Theorem 2.4. Let k be an algebraically closed field and let

V n = {(A,B) ∈Mn(k)×Mn(k) : AB is symmetric}.

Then V n, viewed as a subset of the 2n2-dimensional affine space over k, is an
irreducible variety.

Proof. Consider a pair (A,B) ∈ V n. By Lemma 2.1 there is a nonsingular matrix
T such that AT is symmetric. Thus, (A,B+xT ) is contained in V n for every x ∈ k.
Moreover, except for finitely many values of x, det (B + xT ) is nonzero (because
by Proposition 2.2 the determinant of B + xT is a nonzero polynomial in x and
vanishes for only finitely many values of x). Thus (A,B) is in the closure of the set
of elements in V n where the second term is nonsingular.

Now consider the map ϕ : Sn(k)×Mn(k) −→ V n, defined by

ϕ(S,B) = (BtS,B).

The image of ϕ is irreducible (since the domain is) and is dense (since by Lemma 2.3
it contains all elements of V n where the second term is nonsingular). Thus its
closure is equal to V n and is irreducible. �

Working from the fact that V n is irreducible, we will use a technique introduced
in [2] to show that the variety of pairs of matrices whose product is symmetric is
reduced and a complete intersection. This technique relies on the notion of Jacobian
module and some other related results. Let I = (f1, . . . , fm) be the generators of
an ideal I in the polynomial ring R = k[x11, . . . , xnn, y11, . . . , ynn]. Assume further
that each fi is a sum of terms of the form xijykl. Then, the Jacobian matrix Φ
of the fi’s with respect to the variables yij is a matrix with entries in the ring
A = k[x11, . . . , xnn] and can be used to define an A-module

Am Φ−→ An2

−→ E → 0.

The Jacobian module of R/I is the A-module E = coker(Φ). The importance of
the Jacobian module is the following, see [2, Proposition 1.2]:

Proposition 2.5. Let R = k[x11, . . . , xnn, y11, . . . , ynn]. Let X = (xij) and Y =
(yij) be square n×n matrices in 2n2 indeterminates and let J be the ideal generated
by entries of XY −Y tXt in R. Let E be the Jacobian module of R/J . Then R/J '
S(E). Moreover, if k is algebraically closed and V n is as defined in Theorem 2.4,
then the affine coordinate ring of V n is isomorphic to Spec (S(E))red.

The following theorem follows from [13, Proposition 1.4.1] and [10, Theorem 3.4]:

Theorem 2.6. Let R be a polynomial ring over an arbitrary field, and let E be a
finitely generated R-module of projective dimension one. Then the following condi-
tions are equivalent:

(a) S(E) is an integral domain.
(b) Spec (S(E)) is irreducible.

Moreover, under these conditions, S(E) is a local complete intersection over R.

Theorem 2.7. Let k be an algebraically closed field and R and J be as defined in
Proposition 2.5. Then the scheme Spec(R/J) is reduced and is a complete inter-
section.
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Proof. This will follow from Proposition 2.5 and Theorems 2.4 and 2.6, once we
show that the Jacobian module of R/J has projective dimension one. The following
argument is similar to the proof of [2, Lemma 3.2]. By definition of E we have a
presentation

An(n−1)/2 Φ−→ An2

−→ E −→ 0,

where A = k[x11, . . . , xnn]. It suffices to show that the presentation matrix Φ of
E is injective. This will be achieved by showing that Φ has rank n(n − 1)/2. If
we specialize the matrix X (with notation of Proposition 2.5) to a generic diagonal
matrix (specializing the matrix X will not increase the rank of Φ), it is easy to see
that the entries of Z = XY − Y tXt specialize to

z∗ij = XiiYij −XjjYji

so that the corresponding Jacobian matrix has full rank. �

Remark 2.8. Mueller has shown in [9] that the scheme Spec(R/J) as defined in
Theorem 2.7 is also normal.

3. A connection with the variety of commuting pairs of symmetric
matrices

In char k 6= 2 we can give another proof for the fact that the variety of pairs of
n × n matrices whose product is symmetric is a complete intersection. This proof
is based on results from [2] which we summarize in the following theorem:

Theorem 3.1 ([2]). Let k be an algebraically closed field of characteristic 6= 2, and
let Xs and Ys be generic symmetric n × n matrices in n(n + 1) indeterminates.
Let Is be the ideal generated by entries of XsYs − YsXs in the polynomial ring in
n(n+1) indeterminates over k, which we denote by S. Then Spec (S/Is) is reduced,
irreducible and a complete intersection.

Theorem 3.1 was proved in [2, Theorem 3.1]. Even though it appears that this
proof is only written for characteristic 0, it works in fact in any characteristic 6= 2.
The only place in their proof where characteristic 0 seems to have been used is in
showing that every symmetric matrix commutes with a symmetric nonderogatory
matrix [2, Lemma 3.5], which they need for proving the irreducibility of Spec (S/Is).
We would like to rewrite the proof given in [2, Lemma 3.5] for all characteristics
6= 2. While all we need to do is to change some references, the result needed is
rather technical and it is most convenient to simply reproduce the proof. We recall
that a square matrix A is called nonderogatory if its minimal polynomial coincides
with its characteristic polynomial. This condition is also equivalent to saying that
every matrix that commutes with A can be expressed as a polynomial in A.

Lemma 3.2 ([2, Lemma 3.5]). Let B be a an element of Sn(k), where k is an
algebraically closed field of characteristic 6= 2. Then there exists a nonderogatory
element of Sn(k) that commutes with B.

Proof. By the Jordan decomposition Theorem, see [3, Theorem 24.9], there are
matrices D and N , such that B = D+N , where D is diagonalizable, N is nilpotent,
and both D and N can be expressed as polynomials in B, therefore both are
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symmetric. It follows that D is in fact orthogonally similar to a diagonal matrix,
see [7, Theorem 70]. Let O be an orthogonal matrix that diagonalizes D. Then

OtBO =

s⊕
i=1

(λiIi +N ′i) ,

with N ′i = OtNiO nilpotent and symmetric. Then the matrix

O

(
s⊕

i=1

(µiIi +N ′i)

)
Ot

with distinct µi’s, is nonderogatory and commutes with B. �

We are now ready to present our second proof of the fact that the variety of
pairs of n× n matrices whose product is symmetric is a complete intersection.

Theorem 3.3. Let k be an algebraically closed field of characteristic 6= 2, and let
R, X, Y and J be as defined in Proposition 2.5. Then the ring R/J is a complete
intersection of dimension (3n2 + n)/2.

Proof. Let S be the polynomial ring over k whose indeterminates are exactly those
found in the set

{xij : i ≤ j} ∪ {yij : i ≤ j}.

We see that R has 2n2 indeterminates and that S has n2 +n indeterminates. Define
a surjective homomorphism ϕ : R→ S where

xij 7→

{
xij if i ≤ j,
xji if i > j,

and yi,j 7→

{
yij if i ≤ j,
yji if i > j.

Note that the images of X and Y under ϕ are both symmetric matrices. Hence

(3.1) ϕ(XY − Y tXt) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X).

By [2, Theorem 3.1] the distinct nonzero entries of the matrix

ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X)

form a regular sequence in S of length (n2−n)/2. Since given any regular sequence
in S, the preimage of this sequence will form a regular sequence in R/ ker(ϕ), it
follows from (3.1) that the distinct (up to sign) nonzero entries of XY −Y tXt form
a regular sequence of length (n2 − n)/2 in R/ ker(ϕ).

Next we examine ker(ϕ). It is easy to see that that ker(ϕ) is generated by the
elements of the set

{xij − xji : i < j} ∪ {yij − yji : i < j}

and that these generators are algebraically independent. Hence they form a regular
sequence in R of length (n2 − n). Since these generators and the distinct (up to
sign) nonzero entries of XY − Y tXt are homogeneous elements forming a regular
sequence, we conclude that the distinct (up to sign) nonzero entries of XY −Y tXt

also form a regular sequence of length (n2 − n)/2 in R. Thus, R/J is a complete
intersection ring of dimension (3n2 + n)/2. �
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