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IDEALS WITH LARGER PROJECTIVE DIMENSION AND

REGULARITY

JESSE BEDER, JASON MCCULLOUGH, LUIS NÚÑEZ-BETANCOURT,
ALEXANDRA SECELEANU, BART SNAPP, BRANDEN STONE

Abstract. We define a family of homogeneous ideals with large projective
dimension and regularity relative to the number of generators and their com-
mon degree. This family subsumes and improves upon constructions given in
[Cav04] and [McC]. In particular, we describe a family of three-generated ho-
mogeneous ideals in arbitrary characteristic whose projective dimension grows

asymptotically as
√

d

√

d−1

.

1. Introduction

Throughout this paper let K be a field of any characteristic and set R =
K[x1, . . . , xn]. We consider the following question of Stillman:

Question 1.1 (Stillman, [PS09, Problem 3.14]). Fix a sequence of natural numbers
d1, . . . , dN . Does there exist a number p (independent of n) such that

pd(R/I) ≤ p

for all graded ideals I with a minimal system of homogeneous generators of degrees
d1, . . . , dN?

This question is open in all but low degree cases. In [Zha10], Zhang’s work

on local cohomology modules in characteristic p suggested that
∑N

i=1 di was an
upper bound for pd(R/I). In [McC], the second author showed this was false by
producing a family of ideals whose projective dimensions far exceeded this bound.
However, in the three-generated ideal case, these ideals had projective dimension
of only d + 2 where d is the common degree of the generators. To the best of our
knowledge there were no known ideals with three degree d generators with larger
projective dimension. Clearly then d + 2 is a lower bound for any answer to the
three generated case of Stillman’s Conjecture. We note that by the work of [Bur68]
and later [Bru76], it is natural to ask whether any three-generated ideals in degree
d have larger projective dimension than this.

In this paper we generalize the family of ideals given in [McC] to a larger family
with much larger projective dimension. In the three-generated case, we produce a
family of ideals with generators of degree d and projective dimension larger than
√
d

√
d−1

. We therefore give a new lower bound for any answer to Stillman’s question.
The paper is organized as follows. In Section 2 we recall some previous results

and definitions. In Section 3 we define our family of ideals and compute its pro-
jective dimension. In Section 4 we compute some specific examples and show that
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this family subsumes two interesting families of ideals previously defined. We con-
clude with some computations and questions regarding the Castelnuovo-Mumford
regularity of these ideals.

2. Preliminaries

Let R = K[x1, . . . , xn] and let I = (f1, . . . , fN ) be a homogeneous ideal and set
di = deg(fi). Let F• be the minimal graded free resolution of R/I. Then we may
write

Fi =
⊕

j∈Z

R(−j)βi,j ,

where R(−j) denotes a rank one free module with generator in degree j. In this

case F0 = R and F1 =
⊕N

j=1 R(−dj). The exponents βi,j are called the Betti

numbers of R/I. We can define the projective dimension of R/I as

pd(R/I) = max{i |βi,j 6= 0 for some j}.
Thus, Stillman’s question can be rephrased by asking if pd(R/I) is bounded by a
formula dependent only on F1.

The Castelnuovo-Mumford regularity of R/I is defined as

reg(R/I) = max{j − i |βi,j 6= 0 for some i}.
The Betti numbers are often displayed in matrix form called a Betti table. In the
(i, j) entry we put βi,j−i. Thus, we can view the projective dimension of R/I as
the index of the last nonzero column in the Betti table and the regularity of R/I
as the index of the last nonzero row.

Let m be the graded maximal ideal of R. We also denote the length of the
maximal regular sequence on R/I contained in m by depth(R/I). Finally, we let
socle(R/I) denote {x ∈ R/I |xm = 0}. To compute projective dimension, we make
use of the graded version of the Auslander-Buchsbaum Theorem (see, e.g., [Eis95,
Theorem 19.9]), so in order to show that R/I has maximal projective dimension,
we need only show that socle(R/I) 6= 0.

Further motivating Question 1.1 is Problem 3.15 of [PS09] is an analog of Still-
man’s question for regularity: Is there a bound for reg(R/I) dependent only on
d1, . . . , dN? Caviglia showed that this question is equivalent to Question 1.1. See
[Eng05], pages 11–14 for a nice explanation of this argument.

It is clear that there is an affirmative answer to Stillman’s question when N ≤ 2
or when d1 = · · · = dN = 1. Eisenbud and Huneke verified the case N = 3
and d1 = d2 = d3 = 2 by showing that for ideals I generated by three quadrics,
pd(R/I) ≤ 4. In [Eng10], Engheta verified the case N = 3 and d1 = d2 = d3 = 3
giving pd(R/I) ≤ 36 for this case. This bound is likely not tight as the largest
known projective dimension of R/I for an ideal I generated by three cubics is just
5. The first such example was found by Engheta [Eng10]. A simpler example is
given in [McC].

Few other special cases of Stillman’s question are known. However, in [McC], the
second author defined a family of homogeneous ideals whose projective dimension
grows quickly relative to the number and degrees of the generators. These ideals
were defined as follows:

Definition 2.1. Fix integers m,n, d such that m ≥ 1, n ≥ 0 and d ≥ 2. Or-

der the Mm,d−1 = (m+d−2)!
(m−1)!(d−1)! monomials of degree d − 1 over the variables
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x1, . . . , xm and denote the ith such monomial by Zi. Let p = Mm,d−1 and let
R = K[x1, . . . , xm, y1,1, . . . , yp,n] be a polynomial ring in m + pn variables over
K. We define Im,n,d to be the ideal generated by the following m + n degree d
homogeneous polynomials:

{

xd
i | 1 ≤ i ≤ m

}

∪







p
∑

j=1

Zjyj,k | 1 ≤ k ≤ n






.

It was shown that the projective dimension of R/I is

pd(R/I) = m+ np = m+ n
(m+ d− 2)!

(m− 1)!(d− 1)!
.

In the three-generated degree d case (m = 2, n = 1), the projective dimension of
R/I is d+2. In the general case with N degree d generators (m = 2, n = N−2), the
projective dimension of R/I grows asymptotically as a polynomial in d of degree
N − 2. In the following section we generalize this example and define a new family
of ideals with projective dimension far exceeding both of these.

3. A New Family of Ideals

Let K be a field. Fix g ≥ 2 and integersm1, . . . ,mn such that mn ≥ 0, mn−1 ≥ 1
and mi ≥ 2 for 1 ≤ i ≤ n− 2. Set:

• Mn = mn,
• Mk = mk − 1 for k < n,
• dk = mk + · · ·+mn + 1,
• d = d1.

Unless explicit bounds are given, we’ll use j or j′ for an arbitrary integer in
{1, 2, . . . , g} and k or k′ for an arbitrary integer in {1, 2, . . . , n}.

Finally, for 0 ≤ k ≤ n let

Ak =






(a

j,k
′)

∣
∣
∣
∣
∣
∣

0 ≤ aj,k′ ≤ Mk
′ and

g∑

j=1

aj,k′ = mk
′ for

1 ≤ k′ ≤ k, and aj,k′ = 0 for k < k′ ≤ n






,

R = K[X, yA | X = (xj,k),A ∈ An],

Ig,(m1,...,mn)
= (xd

1,1, . . . , x
d
g,1, f),

where

f =

n−1∑

k=1

∑

A∈Ak−1

g
∑

j=1

X
Ax

mk

j,k x
dk+1

j,k+1 +
∑

B∈An

X
ByB.

By X
A we mean

∏

j,k x
aj,k

j,k , where A = (ai,j). The notation above was chosen so

that the monomial terms in the generator f are all of the form X
A or X

AyA for
some g×n matrix A. We note that the restrictions on g and the mi guarantee that
Ai 6= ∅ for all 0 ≤ i ≤ n− 2 and An−1 6= ∅ and An 6= ∅ if and only if mn−1 ≥ 2.
Before computing the projective dimension of these ideals, we give an example in
detail.
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Example 3.1. Consider the ideal I = I2,(2,2,2). Then d = d1 = 2 + 2 + 2 + 1 = 7,
d2 = 2 + 2 + 1 = 5, and d3 = 2 + 1 = 3. M1 = M2 = 1 and M3 = 2. We then have
that

A0 = {( 0 0 0
0 0 0 )},

A1 = {( 1 0 0
1 0 0 )},

A2 = {( 1 1 0
1 1 0 )},

A3 = {( 1 1 2
1 1 0 ) , (

1 1 1
1 1 1 ) , (

1 1 0
1 1 2 )}.

Finally, the ideal I is
(

x7
1,1, x

7
2,1, f

)

,

where

f = X
( 0 0 0
0 0 0 )

x2
1,1x

5
1,2 + X

( 0 0 0
0 0 0 )

x2
2,1x

5
2,2 + X

( 1 0 0
1 0 0 )

x2
1,2x

3
1,3 + X

( 1 0 0
1 0 0 )

x2
2,2x

3
2,3

+X
(1 1 2
1 1 0 )

y( 1 1 2
1 1 0 )

+ X
( 1 1 1
1 1 1 )

y( 1 1 1
1 1 1 )

+ X
( 1 1 0
1 1 2 )

y( 1 1 0
1 1 2 )

= x2
1,1x

5
1,2 + x2

2,1x
5
2,2 + x1,1x2,1x

2
1,2x

3
1,3 + x1,1x2,1x

2
2,2x

3
2,3

+ x1,1x2,1x1,2x2,2x
2
1,3y( 1 1 2

1 1 0 )
+ x1,1x2,1x1,2x2,2x1,3x2,3y( 1 1 1

1 1 1 )

+ x1,1x2,1x1,2x2,2x
2
2,3y( 1 1 0

1 1 2 )
.

We note that A2 is not used in the definition of I, and in general An−1 is not used
in the definition of Ig,(m1,...,mn)

. Moreover, I is an ideal with 3 degree 7 generators
in a polynomial ring R with 9 variables and R/I has projective dimension 9 by the
following theorem.

Theorem 3.2. Using the notation above with I = Ig,(m1,...,mn)
, depth(R/I) = 0.

In the following proofs, we say that A = (aj,i) ∈ Ak and B = (bj,i) ∈ Ak
′ start

the same if aj,i = bj,i for all i ≤ min(k, k′) and all j with 1 ≤ j ≤ g. Note that if
A ∈ A0, then A and B start the same for all B ∈ Ak, 0 ≤ k ≤ n.

To prove the theorem, we first need the following lemma:

Lemma 1. For each k, 0 ≤ k ≤ n − 1, let Ek = (ej′,k′) be a g × n matrix where

ej′,k′ = dk′ − 1 for 1 ≤ j′ ≤ g, 1 ≤ k′ ≤ k and zero elsewhere. Then

X
Ekx

dk+1

j,k+1 ∈ I

for all j such that 1 ≤ j ≤ g (interpret E0 = 0).

Proof. Induct on k. When k = 0, this says xd
j,1 ∈ I and indeed these are the first

g generators of I. Assume k ≥ 1, and choose any A ∈ Ak−1. Note that A ≤ Ek, so

X
Axmk

j,k x
dk+1

j,k+1X
C = X

Ekx
dk+1

j,k+1
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for some matrix C with nonnegative integer entries. Notice that the matrix C is of
the form














d1 − 1− a1,1 · · · dk−1 − 1− a1,k−1 dk − 1 0 · · · 0
...

...
...

...
...

d1 − 1− aj−1,1 · · · dk−1 − 1− aj−1,k−1 dk − 1 0 · · · 0
d1 − 1− aj,1 · · · dk−1 − 1− aj,k−1 dk − 1−mk 0 · · · 0
d1 − 1− aj+1,1 · · · dk−1 − 1− aj+1,k−1 dk − 1 0 · · · 0

...
...

...
...

...
d1 − 1− ag,1 · · · dk−1 − 1− ag,k−1 dk − 1 0 · · · 0















.

It is enough to show hXC ∈ I for all terms h of f such that h 6= X
Ax

mk

j,k x
dk+1

j,k+1. The
remaining terms of f are of the form

h = X
Bx

m
k
′

j
′

,k
′x

d
k
′
+1

j
′

,k
′

+1

for some B ∈ Ak
′−1 with 1 ≤ k′ ≤ n− 1 and some j′ ≤ g such that A 6= B or A = B

and j′ 6= j or of the form

h = X
ByB

for some B ∈ Ak
′ with k′ = n. Assume h is one of these terms and let M = hXC.

If A and B do not start the same, then consider the first index t ≤ min(k−1, k′−1)
where they disagree. Then the exponent of xs,t in M will be at least dt for some s,

and the exponents of x
s
′

,t
′ will be d

t
′ − 1 for all t′ < t (since A and B agree here),

so by the inductive hypothesis, M is in I.
Now assume that A and B start the same. We’ll break this up according to cases:
Case k

′
< k: The exponent of xj

′

,k
′ in M is at least dk′ . This is true since we

added dk′ − 1− aj′,k′ (the (j′, k′) entry of C) to mk
′ and mk

′ ≥ aj′,k′ + 1. Because
A and B start the same, we can write

M = X
E
k
′x

d
k
′

j
′

,k
′X

D

where D is some g × n matrix with nonnegative integral entries. The inductive
hypothesis again implies this term is in I.

Case k
′
= k: Then A = B. Recall that k ≤ n− 1 and thus m

k
′ ≥ 1. Since the

terms defined by A and B are distinct, j 6= j′. So the exponent of xj
′

,k
′ in M is at

least dk′ , and this term is in I.

Case k
′
> k: Notice that at least two terms in each column k of B are nonzero.

This is follows when k ≤ n − 2 because mi ≥ 2 for 1 ≤ i ≤ n − 2. If k = n − 1
then k′ = n and B ∈ An. This forces mn−1 > 2 (if mn−1 = 1 then Mn−1 = 0 and
An−1 = An = ∅) and thus at least two terms in column n − 1 of B are nonzero.

Now there exists some j′ 6= j such that b
j
′

,k
is positive, and hence the exponent of

xj
′

,k in M is at least dk, so this term is in I. �

Proof of Theorem 3.2. We’ll show that R/I has depth zero by showing that the
element

S = X
T ∈ (I : m)− I,

where T = (tj,k) and tj,k = dk − 1; that is, the image of S in R/I is in socle(R/I).
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Since no term of any generator of I divides S, it is clear that S /∈ I. So we must
show that every variable multiplies S into I. The fact that xj,kS ∈ I for every j, k
follows from the following preceding Lemma. We now show that yAS ∈ I for all
A ∈ An. Notice that

yAS = yAX
A · XC

where C is again some g × n matrix with nonnegative integral entries and yAX
A is

the term in f associated to yA. As before, it is enough to show hXC ∈ I for all

terms h in f such that h 6= yAX
A. Each h has an X

B as a factor, for some B ∈ Ak,
k ∈ {1, 2, . . . , n− 2, n}.

If A and B do not start the same, let t be the first index where they differ. Then
the exponent of some xs,t will be at least dt for some s, so by the lemma, this term
is in I.

Otherwise, A and B start the same and k < n − 1 (if k = n then they can not
start the same). In other words,

h = X
Bx

mk

j,k x
dk+1

j,k+1.

Hence hXC has x
dk+1

j,k+1X
Ek as a factor and thus, by the lemma, is an element of I.

�

Corollary 3.3.

pd(R/I) =

n−1∏

i=1

(
(mi + g − 1)!

(g − 1)!(mi)!
− g

)(
(mn + g − 1)!

(g − 1)!(mn)!

)

+ gn.

Proof. This follows from the graded version of the Auslander-Buchsbaum Theorem
and by counting the number of variables in the R. We get gn variables xj,k with
1 ≤ j ≤ g and 1 ≤ k ≤ n. For each A ∈ An, we get a variable yA. Note that An

consists of exactly those matrices A with nonnegative integer entries such that

(1) All the entries in column k sum to mk.
(2) For all k < n, there are at least two nonzero entries in column k.

In other words, the term
∏g

j=1 x
aj,k

j,k is a monomial of degree mk in g variables and
when k < n, this monomial is not a pure power. The formula for the projective
dimension follows by counting all such monomials. �

Example 3.4. Continuing the notation from Example 3.1, the previous theorem
shows us that

S = X
( 6 4 2
6 4 2 )

= x6
1,1x

6
2,1x

4
1,2x

4
2,2x

2
1,3x

2
2,3 ∈ (I : m)− I.

So the image of S in R/I is in the socle of R/I. It follows that depth(R/I) = 0 and
hence pd(R/I) = 9.

Corollary 3.5. Over any field K and for any positive integer p, there exists an
ideal I in a polynomial ring R over K with three homogeneous generators in degree
p2 such that pd(R/I) ≥ pp−1.

Proof. This follows from the previous Corollary by taking the ideal

I = I2,(p+1,...,p+1
︸ ︷︷ ︸
p−1 times

,0).

�
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We note that this answers two questions posed by the second author in the
negative. The following result can be viewed as an improvement to Corollary 4.7
in [McC].

Corollary 3.6. Over any field K and for any positive integer p, there exists an
ideal I in a polynomial ring R over K with 2p+1 homogeneous generators in degree
2p+ 1 such that pd(R/I) ≥ p2p.

Proof. Take I to be the ideal

I2p,(2,2,2,...,2
︸ ︷︷ ︸

p times

).

�

Neither of these results gives an answer to Stillman’s Question, but they impose
large lower bounds on any possible answer.

4. Examples, Special Subfamilies and Regularity Questions

First we note that the family of ideals defined by the second author are a sub-
family of the ideals defined above. Using the notation in Section 2, we recall the
definition for positive integers n, d we define the ideal

Im,1,d = (xd
1 , . . . , x

d
2, f),

with

f =
∑

i

Ziyi,

where Zi runs through the degree d− 1 monomials in the variables x1, . . . , xd. Up
to relabeling of the variables, we note that

Im,1,d = Im,(d)

as defined in the previous section. (We may replicate the last generator using new
variables to get the full ideal Im,n,d.) As stated earlier, the three-generated version
of these ideals satisfies pd(R/I) = d+ 2 when the generators were taken in degree
d. Here we give a specific example of our new construction that improves upon this
example.

Example 4.1. I = I2,(3,1)

This is an ideal with 3 quintic generators such that pd(R/I) = 8.

Let R be the following polynomial ring

R = K
[

x1,1, x1,2, x2,1, x2,2, y( 2 1
1 0 )

, y( 1 0
2 1 )

, y( 1 1
2 0 )

, y( 2 0
1 1 )

]

.

Then the ideal I is given by

I = (x5
1,1, x

5
2,1, x

3
1,1x

2
1,2 + x3

2,1x
2
2,2 + x2

1,1x1,2x2,1y( 2 1
1 0 )

+ x1,1x
2
2,1x2,2y( 1 0

2 1 )

+ x1,1x1,2x
2
2,1y( 1 1

2 0 )
+ x2

1,1x2,1x2,2y( 2 0
1 1 )

)

and has Betti table
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0 1 2 3 4 5 6 7 8

total: 1 3 53 184 287 248 124 34 4
0: 1 - - - - - - - -
1: - - - - - - - - -
2: - - - - - - - - -
3: - - - - - - - - -
4: - 3 - - - - - - -
5: - - - - - - - - -
6: - - - - - - - - -
7: - - - - - - - - -
8: - - 3 - - - - - -
9: - - 3 4 - - - - -
10: - - 13 46 68 56 28 8 1
11: - - 33 132 218 192 96 26 3
12: - - 1 2 1 - - - -

We also note that our family of ideals subsumes another family of ideals studied
by Caviglia in [Cav04]. Let R = K[w, x, y, z] and let d ≥ 2. Then set

Cd = (xd, yd, xwd−1 − yzd−1).

Caviglia showed that reg(R/Cd) = d2 − 2. To our knowledge, this family has
the fastest growing regularity relative to the degree of the generators in the three-
generated case. We note that these ideals are also a subfamily of the ideals defined
in the previous section. In fact, up to a relabeling of the variables,

Cd = I2,(1,d−2).

In the following example, we show that some of our ideals have larger regularity
than Caviglia’s examples.

Example 4.2. I = I2,(2,1,2)

This is an ideal with 3 degree 6 generators such that pd(R/I) = 6 and reg(R/I) =
41. Its Betti table is displayed at the end of this section.

R = K
[
x1,1, x1,2, x1,3, x2,1, x2,2, x2,3

]

I = (x6
1,1, x

6
2,1, x

2
1,1x

4
1,2 + x2

2,1x
4
2,2 + x1,1x2,1x1,2x

3
1,3 + x1,1x2,1x2,2x

3
2,3)

Calculations with Macaulay2 [GS] indicate that many of the ideals defined in the
previous section have much larger regularity than even this example. Specifically,
we believe that the regularity of

I = I2,(2,2,2,...,2
︸ ︷︷ ︸

p times

,1,i).

has regularity that grows asymptotically as (p + 2)i. When p = 0, this agrees
with Caviglia’s result. However his methods do not extend to the ideals above.
We note that the regularity of R/I is bounded below by the degrees of the socle
elements. However, the socle elements we computed above only grow linearly with
the degrees of the generators. Computing the regularity of the ideals above would
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provide interesting computational examples and also give some insight into the
regularity version of Stillman’s question.

Betti Table of R/I2,(2,1,2):

0 1 2 3 4 5 6

total: 1 3 75 247 320 188 42
0: 1 - - - - - -
1: - - - - - - -
2: - - - - - - -
3: - - - - - - -
4: - - - - - - -
5: - 3 - - - - -
6: - - - - - - -
7: - - - - - - -
8: - - - - - - -
9: - - - - - - -
10: - - 3 - - - -
11: - - - - - - -
12: - - - - - - -
13: - - 2 3 - - -
14: - - - - - - -
15: - - - - - - -
16: - - 3 6 3 - -
17: - - - - - - -
18: - - 1 4 5 2 -
19: - - 4 8 4 - -
20: - - 1 4 6 4 1
21: - - 2 8 10 4 -
22: - - 6 14 11 4 1
23: - - 2 8 12 8 2
24: - - 4 16 21 10 1
25: - - 8 20 18 8 2
26: - - 3 12 18 12 3
27: - - 6 24 32 16 2
28: - - 3 12 18 12 3
29: - - 4 16 24 16 4
30: - - 3 12 18 12 3
31: - - 4 16 24 16 4
32: - - 1 4 6 4 1
33: - - 4 16 24 16 4
34: - - 1 4 6 4 1
35: - - 2 8 12 8 2
36: - - 1 4 6 4 1
37: - - 2 8 12 8 2
38: - - 1 4 6 4 1
39: - - 2 8 12 8 2
40: - - - - - - -
41: - - 2 8 12 8 2
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