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Abstract

We study a generalization of the Canonical Element Conjecture. In particular we
show that given a nonregular local ring (A, m) and an i > 0, there exist finitely gener-
ated A-modules M such that the canonical map from ExtiA(M/mM, Syzi(M/mM))
to Hi

m
(M, Syzi(M/mM)) is nonzero. Moreover, we show that even when M has in-

finite projective dimension and i > dim(A), studying these maps sheds light on the
Canonical Element Conjecture.
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1 Introduction

In this paper, we study a generalization of the Canonical Element Conjecture
of Hochster:

Conjecture 1.1 (Canonical Element Conjecture). Given a local ring (A,m)
of dimension n, the canonical map

ExtnA(A/m, Sn) → Hn
m
(Sn)

is nonzero, where Sn = Syzn(A/m).
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In [10], Hochster showed that the Canonical Element Conjecture implies the
Improved New Intersection Conjecture:

Conjecture 1.2 (Improved New Intersection Conjecture). Let (A,m) be a
local ring and

F• : 0 → Fn → · · · → F0 → 0

be a complex of finitely generated free modules. If ℓ(Hi(F•)) < ∞ for i > 0
and H0(F•) has a nonzero minimal generator killed by a power of m, then
dim(A) 6 n.

The Improved New Intersection Conjecture developed out of the work of Evans
and Griffith in [5]. In [5], they used the existence of Hochster’s Big Cohen-
Macaulay modules to prove the Improved New Intersection Conjecture in the
equicharacteristic case.

It was suspected that the Canonical Element Conjecture was stronger than the
Improved New Intersection Conjecture. However in [1], Dutta showed that the
Improved New Intersection Conjecture implies the Canonical Element Conjec-
ture. More recently, the conjectures were shown to be true when the dimension
of the ring is 3 by Heitmann in [7].

Instead of studying the Canonical Element Conjecture directly, we choose to
study a generalization based on generalized local cohomology modules.

Definition 1.3. If (A,m) is a local ring with finitely generated A-modules M
and S, the ith M -local cohomology of S with respect to m is defined as:

Hi
m
(M,S) := lim

−→
t

ExtiA(M/mtM,S)

These modules were first studied by Grothendieck in [6, Exposé VI]. They
were also studied by Herzog in his thesis [8]. Recently, these modules have
attracted the interest of others as well. Of critical importance is that if the A-
module M has infinite projective dimension, then Hi

m
(M,S) might not vanish

for i > dim(A). We direct the reader to the work of Suzuki [11] and the work
of Herzog and Zamani [9] for details on the vanishing of generalized local
cohomology. Since local cohomology modules vanish above the dimension of
the ring, for a local ring (A,m) it is useless to study the maps

ExtiA(A/m, Syzi(A/m)) → Hi
m
(Syzi(A/m))

when i > dim(A). However, since generalized local cohomology modules might
not vanish above the dimension of the ring, studying the canonical maps

ExtiA(M/mM,Si) → Hi
m
(M,Si),
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where M is some finitely generated A-module and Si is either Syzi(A/m) or
Syzi(M/mM) give us a new angle from which to attack this problem.

Among other things, we prove two theorems which show the importance of
studying the above maps. Namely in Section 2, we prove the following propo-
sition:
Proposition 2.2. Let (A,m) be a local ring, then the following are equivalent:

(1) The canonical map

ExtiA(A/m, Syzi(A/m)) → Hi
m
(Syzi(A/m))

is nonzero.
(2) For all nonzero finitely generated A-modules M , the canonical map

ExtiA(M/mM, Syzi(A/m)) → Hi
m
(M, Syzi(A/m))

is nonzero.
(3) For all nonzero finitely generated A-modules M and N , the canonical

map

ExtiA(M/mM, Syzi(N/mN)) → Hi
m
(M, Syzi(N/mN))

is nonzero.

When n = dim(A), we see that the validity of the Canonical Element Conjec-
ture and the above proposition imply that the map

ExtnA(M/mM,Sn) → Hn
m
(M,Sn)

is nonzero for all nonzero finitely generated A-modules M .

Moreover, in Section 3 we show that merely studying modules of infinite pro-
jective dimension can shed light on the Canonical Element Conjecture:
Theorem 3.1. Let (A,m) be a local ring of dimension n and depth n− 1. If
the Canonical Element Conjecture does not hold for A, that is, if for some t0

ExtnA(A/m, Syzn(A/m)) → ExtnA(A/mt0 , Syzn(A/m))

is zero, then for all i > n and all finitely generated A-modules S, the canonical
maps

ϑi : ExtiA(M/mM,S) → Hi
m
(M,S)

are zero whenever M is of the form A/a where a ⊂ m
t0.

Thus studying modules for which the maps ϑi are nonzero when i > n may
lead to a a possible proof of the Canonical Element Conjecture for rings of
dimension n and depth n − 1. In light of Theorem 3.1, we find the following
theorem interesting:
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Theorem 3.2. Let (A,m) be a local ring which is not regular and let (P•, ρ•)
be a minimal free resolution of some finitely generated A-module Q of infinite
projective dimension. If M = Coker(ρ∗i ) for some i > 2, then the canonical
map

ExtiA(M/mM,Si) → Hi
m
(M,Si)

is nonzero, where Si = Syzi(M/mM).

As a corollary, we show that in the case where A is a Gorenstein ring that
is not regular, there are infinitely many isomorphism classes of A-modules M
such that the map

ExtiA(M/mM, Syzi(M/mM)) → Hi
m
(M, Syzi(M/mM))

is nonzero for all i. We are currently working to expand the class of modules
for which the canonical maps discussed above are nonzero.

2 Basic Results

It is clear that H0
m
(M,−) is a covariant left exact functor with an associated

long exact sequence of generalized local cohomology modules. However, it is
also true that H0

m
(−, N) is a contravariant left exact functor with an associated

long exact sequence of generalized local cohomology modules. This is stated
in [9], but here we provide a different proof.

Proposition 2.1. Let A be a Noetherian ring, I be an ideal, and N be an
A-module. Given a short exact sequence of finitely generated A-modules

0 →M ′ →M →M ′′ → 0

we obtain the long exact sequence:

0 → H0
I(M

′′, N) → H0
I(M,N) → H0

I(M
′, N) → H1

I(M
′′, N) → · · ·

Proof. For two natural numbers s and t, apply −⊗AA/I
s+t to the short exact

sequence of finitely generated A-modules

0 →M ′ →M →M ′′ → 0

to get the exact sequence

0 → K →M ′/Is+tM ′ →M/Is+tM →M ′′/Is+tM ′′ → 0,

where K is the kernel of the map from M ′/Is+tM ′ to M/Is+tM . Note that

K =
M ′ ∩ Is+tM

Is+tM ′
.
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Break off the following exact sequences

0 → K →M ′/Is+tM ′ → Z → 0,

0 → Z →M/Is+tM →M ′′/Is+tM ′′ → 0,

to see that:

Z ≃
M ′/Is+tM ′

(M ′ ∩ Is+tM)/Is+tM ′
≃

M ′

M ′ ∩ Is+tM

By the Artin-Rees Lemma we see that for some s and all t we have

M ′ ∩ Is+tM = I t(M ′ ∩ IsM).

Additionally, for any given t, there exists some r such that

IrM ′ ⊂M ′ ∩ Is+tM = I t(M ′ ∩ IsM) ⊂ I tM ′.

Hence the sets I t(M ′ ∩ IsM) and I tM ′ are cofinal with respect to t. Thus we
see that

lim
−→
t

ExtiA(Z,N) ≃ lim
−→
t

ExtiA(M ′/I t(M ′ ∩ IsM), N)

≃ lim
−→
t

ExtiA(M ′/I tM ′, N),
(2.1)

and so the short exact sequence

0 → Z →M/Is+tM →M ′′/Is+tM ′′ → 0

leads to:

0 HomA(M ′′/Is+tM ′′, N) HomA(M/Is+tM,N) HomA(Z,N)

Ext1
A(M ′′/Is+tM ′′, N) Ext1

A(M/Is+tM,N) Ext1
A(Z,N) · · ·

Taking the direct limit with respect to t of each term above, and applying
(2.1) we are done.

Now we show a strong connection between the Canonical Element Conjecture
and the maps ExtiA(M/mM,Si) → Hi

m
(M,Si).

Proposition 2.2. Let (A,m) be a local ring, then the following are equivalent:

(1) The canonical map

ExtiA(A/m, Syzi(A/m)) → Hi
m
(Syzi(A/m))

is nonzero.
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(2) For all nonzero finitely generated A-modules M , the canonical map

ExtiA(M/mM, Syzi(A/m)) → Hi
m
(M, Syzi(A/m))

is nonzero.
(3) For all nonzero finitely generated A-modules M and N , the canonical

map
ExtiA(M/mM, Syzi(N/mN)) → Hi

m
(M, Syzi(N/mN))

is nonzero.

Proof. (1) ⇒ (2) For any finitely generated A-module M we may write

Ar →M → 0,

where r is the number of generators in a minimal generating set of M . Apply-
ing − ⊗A A/m, we see that Ar/mAr ≃ M/mM . Thus we have the following
commutative diagram:

ExtiA(M/mM, Syzi(A/m)) ExtiA(Ar/mAr, Syzi(A/m))

6=0

Hi
m
(M, Syzi(A/m)) Hi

m
(Ar, Syzi(A/m))

By assumption

ExtiA(A/m, Syzi(A/m)) → Hi
m
(Syzi(A/m))

is nonzero. From the definition of generalized local cohomology and since we
may pull finite direct sums out of Ext modules, we see that the right vertical
map is nonzero. Hence the left vertical map is nonzero.

(2) ⇒ (3) Given any finitely generated A-module N , note that Ext commutes
with finite direct sums and that we have

Syzi(N/mN) =
r⊕

1

Syzi(A/m).

(3) ⇒ (1) This is clear, as we may set M = A and N = A.

From [3, Theorem 3.2] and [4, Theorem 1.2], we see that given a local ring
(A,m) of dimension n, the maps

ExtiA(A/m, Syzi(A/m)) → Hi
m
(Syzi(A/m))

are nonzero for 0 6 i 6 n − 1. Hence by Proposition 2.2, we see that for all
finitely generated nonzero A-modules M the maps

ExtiA(M/mM, Syzi(M/mM)) → Hi
m
(M, Syzi(M/mM))
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are nonzero for 0 6 i 6 n − 1. We will now give a direct proof of this fact,
using a similar line of reasoning as found in [3, Theorem 3.2] and [4, Theorem
1.2] for rings of dimension n and depth d where 0 < d < n. The proof of this
fact will illuminate connections that we will utilize later in this paper. Before
we can get to the proof, we need some more tools. The following lemma, in a
slightly less general form, appears explicitly as part of [1, Theorem 3.1] and
implicitly in [3] and [4]:

Lemma 2.3. Let (A,m) be a local ring, M be a finitely generated A-module,
and Si = Syzi(M/mM). If for some integer i

ExtiA(M/mM,Si) → Hi
m
(M,Si)

is the zero map, then for t sufficiently large the following holds: Given (F•, σ•)
and (G•, τ•), free resolutions of M/mM and M/mtM respectively, one can
construct a lift ϕ• : G• → F• of the canonical surjection from M/mtM to
M/mM , such that ϕj = 0 for j > i.

Proof. Suppose that

ExtiA(M/mM,Si) → Hi
m
(M,Si)

is zero. Then for t sufficiently large, the canonical map

ExtiA(M/mM,Si) → ExtiA(M/mtM,Si)

is zero. Let ϕ• : G• → F• be a lift of the canonical surjection from M/mtM
to M/mM and consider the following commutative diagram:

Gi
τi

ϕi

Gi−1

ϕi−1

δ

Ti

ιT

Fi Fi−1

Si
ιS

Here Ti = Syzi(M/mtM) and ιT along with ιS are canonical injections. Set
(−)∨ = HomA(−, Si) and note that

ExtiA(M/mtM,Si) =
Ker(τ∨i+1)

Im(τ∨i )

=
HomA(Ti, Si)

Im(τ∨i )
.

By assumption, the class of ϕi is zero in ExtiA(M/mtM,Si). Thus the image
of ϕi−1|Ti

is zero in ExtiA(M/mtM,Si), by the commutativity of the diagram
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above. Hence the image of the class of ϕi−1|Ti
is in Im(τ∨i ). So there exists

δ : Gi−1 → Si

such that δ ◦ ιT = ϕi−1|Ti
. Now set ϕ̃i−1 := ϕi−1 − ιS ◦ δ. This map lifts to the

zero map between Ti and Si. Hence any further lift of ϕ will also be zero.

We will also need the following proposition, [1, Proposition 1.1]:

Proposition 2.4 (Dutta [1, Proposition 1.1]). Let A be a local ring and let

G• : · · · → Gi → · · · → G1 → G0

be a complex of finitely generated free A-modules with H0(G•) = M . Let N be
a submodule of M . Then we can find a complex L• of finitely generated free
modules and a map ψ• : L• → G• such that:

(1) H0(L•) = N .
(2) Hi(L•) ≃ Hi(G•) for all positive i.
(3) If G• is minimal, then so is L•.
(4) Cone(ψ•) is a resolution of M/N .

The above proposition is useful for constructing maps of complexes from a
single map of modules, even when the target complex is not exact. Finally,
recall the following theorem [2, Theorem 1.1]:

Theorem 2.5 (Dutta [2, Theorem 1.1]). Let A be a ring of dimension n and
depth d where 0 < d < n. Let (L•, λ•) be a minimal complex such that:

(1) H0(L•) 6= 0.
(2) ℓ(Hi(L•)) <∞ for all i.
(3) Hi(L•) = 0 for i > n− d.

Then Coker(λi) cannot have a free summand for i > 1 and i 6= n. Moreover
Coker(λn) cannot have a free summand if and only if the Canonical Element
Conjecture holds.

We now state and prove the following:

Theorem 2.6. Let (A,m) be a local ring of dimension n and depth d where
0 < d < n. For all nonzero finitely generated A-modules M the canonical map

ExtiA(M/mM,Si) → Hi
m
(M,Si)

is nonzero for 0 6 i 6 n− 1, where Si = Syzi(M/mM).
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Proof. Argue by way of contradiction. Suppose that

ExtiA(M/mM,Si) → Hi
m
(M,Si)

is the zero map. By Lemma 2.3, for t ≫ 0 and minimal free resolutions F•

and G• of M/mM and M/mtM respectively, there exists a lift ϕ• : G• → F•

of the canonical surjection ϕ : M/mtM →M/mM such that ϕi is zero in the
commutative diagram below:

· · · Gi
τi

ϕi

Gi−1

ϕi−1

· · · G1
τ1

ϕ1

G0

ϕ0

M/mtM

ϕ

0

· · · Fi
σi Fi−1 · · · F1

σ1 F0 M/mM 0

Thus the map between Ti = Syzi(M/mtM) and Si is zero and we have the
following commutative diagram with exact rows:

0 Ti

0

Gi−1 Ti−1 0

0 Si Fi−1 Si−1 0

Apply (−)∗ = HomA(−, A) to obtain:

0 Exti−1
A (M/mM,A) F ∗

i−1/ Im(σ∗
i−1)

ℓ

Im(σ∗
i )

0

0

0 Exti−1
A (M/mtM,A) G∗

i−1/ Im(τ ∗i−1) Im(τ ∗i ) 0

Since the far right vertical map is 0, we obtain a lift ℓ making the above
diagram commute. Thus we see that the composition

F ∗
i−1/ Im(σ∗

i−1) → Exti−1
A (M/mtM,A) → G∗

i−1/ Im(τ ∗i−1) → Im(τ ∗i ) (2.2)

is the zero map.

From Proposition 2.4, [1, Proposition 1.1], we obtain a minimal complex L•,
such that Hi(L•) = Hi(G

∗
•) and that the following diagram commutes:

Li
λi Li−1

λi−1

ψi−1

Li−2

ψi−2

· · · L0

ψ0

Exti−1
A (M/mtM,A) 0

0 G∗
0 G∗

1 · · · G∗
i−1 G∗

i−1/ Im(τ ∗i−1) 0

Li−1 Li−2 ⊕G∗
0 Li−3 ⊕G∗

1 · · · G∗
i−1 Im(τ ∗i ) 0

(2.3)
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Note that the bottom row is the cone of ψ•. Now consider the following com-
mutative diagram:

0 F ∗
0

h

σ∗

0 F ∗
1

h′

· · · F ∗
i−1 F ∗

i−1/ Im(σ∗
i−1) 0

0 G∗
0

(0,1G∗

0
)

G∗
1 · · · G∗

i−1 G∗
i−1/ Im(τ ∗i−1) 0

Li−1 Li−2 ⊕G∗
0 Li−3 ⊕G∗

1 · · · G∗
i−1 Im(τ ∗i ) 0

By (2.2), the composition F ∗
i−1/ Im(σ∗

i−1) → Im(τ ∗i ) is the zero map. Hence
we have produced a lift that is homotopic to zero. Thus there exist homotopy
maps h, h′ such that:

(−λi−1,−ψi−1) ◦ h+ h′ ◦ σ∗
0 = (0,1G∗

0
)

However, Im(σ∗
0) ⊂ mF ∗

1 , thus we see:

Im(ψi−1) = Im(−ψi−1) = G∗
0

This together with (2.3) shows that ψi−1 induces a surjection Coker(λi) ։ G∗
0

and hence Coker(λi) has a free summand. We will now show that this cannot
be the case. By construction, the homology of L• is:

Hj(L•) =





Exti−j−1
A (M/mtM,A) for j < i,

0 for j > i

Note that ℓ(Hj(L•)) < ∞ for all j. Moreover, for j > i − d, Hj(L•) = 0.
For 1 < i 6 n − 1, L• satisfies the hypothesis of Theorem 2.5, [2, Theorem
1.1], implying again that the cokernel of λi cannot have free summand, a
contradiction.

While the validity of [3, Theorem 3.2] and [4, Theorem 1.2] both rely on the
validity of the Improved New Intersection Conjecture in equicharacteristic,
the argument above relies on Theorem 2.5, [2, Theorem 1.1]. This observation
is interesting since the Improved New Intersection Conjecture is a statement
about complexes which seems meaningful only in degree less than the dimen-
sion of the ring, while Theorem 2.5 is a statement that is meaningful in any
degree. However despite this seeming advantage, it seems difficult to use it to
obtain a stronger result.
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3 Infinite Projective Dimension

In the case of standard local cohomology, the local cohomology modules all
vanish above the dimension of the ring. This is not necessarily the case for
generalized local cohomology. In [1], Dutta discovered a beautiful interpreta-
tion of the Canonical Element Conjecture which he reiterates in [3] and [4].
Here we present a similar interpretation involving generalized local cohomol-
ogy over local rings which are not regular. Consider a minimal free resolution
of M/mM :

· · · −→ Fi
σi−→ Fi−1 −→ · · ·−→ F1

σ1−→ F0 −→ M/mM −→ 0

Since A is not regular, we see that pdA(M/mM) is not finite. For each i, let
Si = Syzi(M/mM) and break this resolution into short exact sequences:

0 Si Fi−1 Si−1 0

0 Si−1...

Fi−2...

Si−2...
0

0 S1 F0 M/mM 0

Apply the functors HomA(M/mM,−) and H0
m
(M,−) to each of the short exact

sequences above. Looking at the connecting homomorphisms of the long exact
sequences of the corresponding derived functors, one obtains the following
commutative diagram:

E0 δ0

ϑ0

E1 δ1

ϑ1

· · ·
δi−2

Ei−1
δi−1

ϑi−1

Ei δi

ϑi

· · ·

H0 δ0
H1 δ1 · · ·

δi−2

H i−1
δi−1

H i δi · · ·

(3.1)

Here Ei = ExtiA(M/mM,Si), H
i = Hi

m
(M,Si), Si = Syzi(M/mM), and the

vertical maps are from the definition of Hi
m
(M,−). In this case, the δi’s map

the image of 1M/mM in E0 to the image of 1Si
in Ei. We will briefly sketch

why this is so. Consider the commutative diagram with exact rows:

...
...

...

0 HomA(F1, S1)

σ′

2

HomA(F1, F0)

σ′′

2

HomA(F1,M/mM)

σ′′′

2

0

0 HomA(F0, S1)

σ′

1

HomA(F0, F0)

σ′′

1

HomA(F0,M/mM)

σ′′′

1

0

0 0 0
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Consider 1M/mM ∈ HomA(M/mM,M/mM) ≃ E0. This element has a preim-
age, call it 1′′′

M/mM ∈ Ker(σ′′′
1 ). By the exactness of the rows, we may pull this

element back to 1F0
∈ HomA(F0, F0) and then apply σ′′

1 . By the commuta-
tivity of the diagram, we see that this element pulls back to an element of
HomA(F1, S1), namely σ1. One can show that this element is a nonzero ele-
ment in E1 represented by the image of 1S1

. This diagram chase is precisely
the construction of δ1. Working inductively, we see that each δi maps the image
of 1Si

in Ei to the image of 1Si+1
in Ei+1.

In [10], Hochster shows that when M = A, there are canonical elements as-
sociated to the maps ϑi above. The same is true in our more general setting.
Let εi be the image of 1Si

in ExtiA(M/mM,Si) and suppose that there ex-
ists ζ ∈ ExtiA(M/mM,Si) such that ϑi(ζ) 6= 0. Since ζ is represented by
some element f ∈ HomA(Si, Si), we have two maps induced by the functors
(−)∗ = HomA(M/mM,−) and (−)∨ = Hi

m
(M,−), forming the commutative

diagram below:

ExtiA(M/mM,Si)

f∗

ϑi Hi
m
(M,Si)

f∨

ExtiA(M/mM,Si)
ϑi Hi

m
(M,Si)

By the commutativity of the above diagram

ϑi(ζ) = ϑi(f∗(εi))

= f∨(ϑi(εi)).

Since ϑi(ζ) 6= 0, we see that ϑi(εi) 6= 0. The element ϑi(εi) is our canonical
element. In particular, we see that ϑi is nonzero if and only if the element
ϑi(εi) is nonzero.

The commutativity of diagram (3.1) above shows that if ϑi is nonzero, then ϑj
is nonzero for 0 6 j 6 i. Moreover, studying the nature of ϑi when i > dim(A)
has direct implications for the Canonical Element Conjecture:

Theorem 3.1. Let (A,m) be a local ring of dimension n and depth n− 1. If
the Canonical Element Conjecture does not hold for A, that is, if for some t0

ExtnA(A/m, Syzn(A/m)) → ExtnA(A/mt0 , Syzn(A/m))

is zero, then for all i > n and all finitely generated A-modules S, the canonical
maps

ϑi : ExtiA(M/mM,S) → Hi
m
(M,S)

are zero whenever M is of the form A/a where a ⊂ m
t0.

Proof. Suppose that the canonical map

ExtnA(A/m, Syzn(A/m)) → ExtnA(A/mt0 , Syzn(A/m))
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is zero. Following the proof of Theorem 2.6 with A substituted for M and n
substituted for i, we obtain the following diagram:

Ln
λn Ln−1

λn−1

ψn−1

Ln−2

ψn−2

· · · L0

ψ0

Extn−1
A (A/mt0 , A) 0

0 G∗
0 G∗

1 · · · G∗
n−1 G∗

n−1/ Im(τ ∗n−1) 0

(3.2)

One should note that since the depth of A is n − 1, the above diagram has
exact rows. Again using the same technique as in the proof of Theorem 2.6,
one can show that ψn−1 is onto. Now we will use the same basic technique as
used in [1, Proposition 2.1]. Since ψn−1 is onto, (3.2) above shows that

Ln−1/ Im(λn) = Syzn−1(Extn−1
A (A/mt0 , A))

has a free summand. Since (Syzn−1(Extn−1
A (A/mt0 , A)))∗ = Ker(λ∗n), we see

that Ker(λ∗n) has a free summand. Hence there exists a minimal generator of

Ker(λ∗n)

Im(λ∗n−1)
= Extn−1

A (Extn−1
A (A/mt0 , A), A)

mapping to a minimal generator of L∗
n−1/ Im(λ∗n−1). Thus L∗

n−1/ Im(λ∗n−1) has
a minimal generator killed by

m
t0 ⊂ AnnA(Extn−1

A (Extn−1
A (A/mt0 , A), A)).

Let M be any finitely generated A-module of the form A/a where a ⊂ m
t0 .

Now M/mtM ≃ A/(mt + a). In particular,

M/mt0M = A/mt0 .

Write:

0
m

m
t0

A

m
t0

A

m

0

0 Z
L∗
n−1

Im(λ∗n−1)
A

m

0

(3.3)

In the above diagram, the middle vertical map is defined by mapping the
image of 1 in A/mt0 to a minimal generator of L∗

n−1/ Im(λ∗n−1) which is killed
by m

t0 . The map L∗
n−1/ Im(λ∗n−1) → A/m, is defined as to make the right hand

square commute by mapping the minimal generator mentioned above to the
image of 1 in A/m. The module Z is the kernel of this map.

Apply (−)∗ to the top row of (3.2) to obtain:

0−→ L∗
0 −→ L∗

1 −→ · · ·−→ L∗
n−1/ Im(λ∗n−1)−→ 0
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Thus for 0 6 j 6 n− 1, we have that:

Hj(L∗
•) = ExtjA(Extn−1

A (A/mt0 , A), A)

Since Extn−1
A (A/mt0 , A) is killed by m

t0 and depth(A) = n−1, we see that the
above sequence is exact, hence

pdA(L∗
n−1/ Im(λ∗n−1)) 6 n− 1.

Thus ExtiA(L∗
n−1/ Im(λ∗n−1), S) = 0 for all i > n and allA-modules S. Applying

HomA(−, S) to (3.3), we obtain the commutative diagram:

Exti−1
A (Z, S) ExtiA(A/m, S) 0

Exti−1
A (m/mt0 , S) ExtiA(A/m, S) 0 ExtiA(A/mt0 , S)

Since A/m ≃M/mM and A/mt0 ≃M/mt0M , we see that for t = t0,

ExtiA(M/mM,S) → ExtiA(M/mtM,S)

is zero. Thus if we take the direct limit over t of the right hand side, the
induced canonical map is zero.

Consider a ring A of dimension n and depth n − 1. If for every integer t we
could find a module of the form A/a where a ⊂ m

t such that

ϑi : ExtiA(M/mM,Si) → Hi
m
(M,Si)

is nonzero for some i > n, then the above theorem shows that the Canoni-
cal Element Conjecture holds for A. Unfortunately we cannot yet show this.
However, our next theorem gives a construction for modules such that ϑi is
nonzero, even when the validity of the Canonical Element Conjecture is un-
known.

Theorem 3.2. Let (A,m) be a local ring which is not regular and let (P•, ρ•)
be a minimal free resolution of some finitely generated A-module Q of infinite
projective dimension. If M = Coker(ρ∗i ) for some i > 2, then the canonical
map

ExtiA(M/mM,Si) → Hi
m
(M,Si)

is nonzero, where Si = Syzi(M/mM).

Proof. Argue by way of contradiction. Suppose that for some natural number
i, the map

ExtiA(M/mM,Si) → Hi
m
(M,Si)

14



is the zero map. By Lemma 2.3, for t ≫ 0 and minimal free resolutions F•

and G• of M/mM and M/mtM respectively, there exists a lift ϕ• : G• → F•

of the canonical surjection ϕ : M/mtM →M/mM such that ϕi is zero in the
commutative diagram below:

· · · Gi
τi

ϕi

Gi−1

ϕi−1

· · · G1
τ1

ϕ1

G0

ϕ0

M/mtM

ϕ

0

· · · Fi
σi Fi−1 · · · F1

σ1 F0 M/mM 0

Thus the map between Ti = Syzi(M/mtM) and Si is zero and we have the
following commutative diagram with exact rows:

0 Ti

0

Gi−1 Ti−1

ϕi−2

0

0 Si Fi−1 Si−1 0

Apply the functor (−)∗ = HomA(−, A) and write:

0 Ker(σ∗
i ) F ∗

i−1

ε
ϕ∗

i−1

Im(σ∗
i )

0

0

Im(σ∗
i−1)

ϕ∗

0 Ker(τ ∗i ) G∗
i−1 Im(τ ∗i ) 0

Im(τ ∗i−1)
ψ

Setting ϕ∗ = ϕ∗
i−1|Im(σ∗

i−1
) and letting ιF : Im(σ∗

i−1) → F ∗
i−1 and ψ be the

canonical injections, we have that:

ψ ◦ ϕ∗ = ε ◦ ιF (3.4)

Let

· · · −→ Li
λi−→ Li−1 −→ · · ·−→ L1

λ1−→ L0 −→ Ker(τ ∗i )−→ 0

be a minimal free resolution of Ker(τ ∗i ). We may now lift ψ to obtain the
diagram below:

0 F ∗
0

σ∗

1

ϕ∗

0

F ∗
1

ϕ∗

1

· · · F ∗
i−2

ϕ∗

i−2

Im(σ∗
i−1)

ϕ∗

0 G∗
0

τ∗
1

ψi−2

G∗
1

ψi−3

· · · G∗
i−2

ψ0

Im(τ ∗i−1)

ψ

Li−1
λi−1 Li−2

λi−2 Li−3 · · · L0 Ker(τ ∗i ) 0
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However, we also have the following commutative diagram:

0 F ∗
0

σ∗

1 F ∗
1 · · · F ∗

i−3

σ∗

i−2 F ∗
i−2

σ∗

i−1

Im(σ∗
i−1)

ιF

0 0 0 · · · 0 F ∗
i−1 F ∗

i−1

ε

0

Li−1
λi−1 Li−2

λi−2 Li−3 · · · L1
λ1 L0 Ker(τ ∗i ) 0

By (3.4) above we see that we have two lifts of the map ψ ◦ϕ∗ = ε ◦ ιF . Hence
we have homotopy maps g and g′ such that

ψi−2 ◦ ϕ
∗
0 = λi−1 ◦ g + g′ ◦ σ∗

1, hence

Im(ψi−2 ◦ ϕ
∗
0) = Im(λi−1 ◦ g + g′ ◦ σ∗

1),

with right hand side of the above equation contained in mLi−2 as the maps
λi−1 and σ∗

1 are minimal. Thus, if we assume that the canonical map from
ExtiA(M/mM,Si) to Hi

m
(M,Si) is zero, we must conclude that:

Im(ψi−2) ⊂ mLi−2

This leads to a contradiction as we will now show that:

Im(ψi−2) 6⊂ mLi−2

Recall the construction of M and lift the canonical surjection θ to a map of
complexes to obtain:

P ∗
0

θi

P ∗
1

θi−1

P ∗
2

θi−2

· · · P ∗
i−1

θ1

P ∗
i

θ0

M

θ

0

Gi Gi−1 Gi−2 · · · G1 G0 M/mtM 0

Apply (−)∗ and look at:

G∗
i−2

τ∗
i−1 G∗

i−1
τ∗
i

θ∗
i−1

G∗
i

Im(τ ∗i−1)
ψ

Ker(τ ∗i )
γ

P2 P1 P0

U

where U = Syz2(Q) and γ = θ∗i−1|Ker(τ∗
i
). Letting θ̃ = γ ◦ ψ, we have the
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following commutative triangle:

Im(τ ∗i−1)
ψ

θ̃ Ker(τ ∗i )
γ

U

Abusing notation slightly, from our work above, we have three complexes
G∗

• → Im(τ ∗i−1), L• → Ker(τ ∗i ), and the complex formed by truncating P• at

P2, which we will denote by P• → U . In this case, ψ• is lift of ψ, θ∗• lifts θ̃, and
since P• is exact we may lift γ to a map of complexes γ•. We may put these
lifts and complexes together into a long diagram with commutative squares
which we examine near degree i− 2:

0 G∗
0

τ∗
1

ψi−2θ∗
0

G∗
1 · · ·

Li−1 Li−2

γi−2

Li−3 · · ·

Pi+1
ρi+1

Pi Pi−1 · · ·

Since θ∗• and γ• ◦ψ• are both lifts of θ̃ = γ ◦ψ, we see that there are homotopy
maps, h and h′, such that:

θ∗0 − γi−2 ◦ ψi−2 = ρi+1 ◦ h+ h′ ◦ τ ∗1

However, Im(ρi+1 ◦ h+ h′ ◦ τ ∗1 ) ⊂ mPi, and so

(θ∗0 − γi−2 ◦ ψi−2) ⊗A A/m = 0.

Hence θ∗0 and γi−2 ◦ψi−2 agree on minimal generators modulo m. Thus we see
that Im(ψi−2) 6⊂ mLi−2, yielding a contradiction.

By the discussion given at the beginning of this section, we see that if we
construct an A-module M such that for some i > 2

ExtiA(M/mM, Syzi(M/mM)) → Hi
m
(M, Syzi(M/mM))

is nonzero, then

ExtjA(M/mM, Syzj(M/mM)) → Hj
m
(M, Syzj(M/mM))

is nonzero for all 0 6 j 6 i. One may wonder if there are rings and modules
such that the map

ExtiA(M/mM, Syzi(M/mM)) → Hi
m
(M, Syzi(M/mM))
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is nonzero for all i > 0. Our next corollary answers this question in the affir-
mative:

Corollary 3.3. Let (A,m) be a nonregular Gorenstein ring of dimension n,
then there exist infinitely many isomorphism classes of finitely generated A-
modules M such that the canonical map

ExtiA(M/mM, Syzi(M/mM)) → Hi
m
(M, Syzi(M/mM))

is nonzero for all i > 0.

Proof. Consider a module M constructed as in Theorem 3.2 where i = n+ 1.
Let F• be a minimal free resolution of M/mM and let Si = Syzi(M/mM).
Write

0−→ Sn+2 −→ Fn+1 −→ Sn+1 −→ 0

and look at the corresponding long exact sequences of Ext and generalized
local cohomology modules:

Extn+1
A (M/mM,Sn+1)

6=0

Extn+2
A (M/mM,Sn+2)

Hn+1
m

(M,Fn+1) Hn+1
m

(M,Sn+1)
δ Hn+2

m
(M,Sn+2)

Since A is Gorenstein, A has injective dimension n. Thus

Hn+1
m

(M,Fn+1) = lim
−→

Extn+1
A (M/mtM,Fn+1) = 0.

Thus δ above is injective, and so

Extn+2
A (M/mM,Sn+2)

6=0
−→ Hn+2

m
(M,Sn+2).

A similar proof will work for any i > n.

Remark 3.4. It would be interesting to know if there are non-Gorenstein
rings such that Hi

m
(M,A) = 0 for i ≫ 0, where M has infinite projective

dimension.
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[Mathematical Documents (Paris)], 4, Société Mathématique de France, Paris,
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