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Abstract

This is an expository article on exponential asymptotics, transseries and Borel sum-
mation and their applications to nonlinear differential equations. We illustrate the main
features of the theory through concrete and relatively simple examples. Recent develop-
ments include singularity prediction in both ordinary and partial differential equations.

1 Introduction

Following pioneering work by Stokes[18], Dingle[7], exponential asymptotics has been a very
active area of research in recent years, after fundamental advances by Berry[3], Kruskal and
Ecalle[14]. It deals with terms that are smaller than any term of a classical asymptotic ex-
pansion. Besides intrinsic mathematical interest, this area is of relevance to many applications,
mathematical and physical, ranging from ionization of atoms, quantum tunnelling, bending losses
in an optical fiber, capillary water waves, dendritic crystal growth, viscous fingering, splitting
of stable and unstable manifolds in dynamical systems and many other areas. The reader is
referred to [17] and [4] for a host of such applications.

Exponential asymptotics and associated Borel summation have also become important tools
in studying questions of regularity and singularity for both ODEs [9] and PDEs [13]. This may
be thought of as a rather unexpected development since exponential asymptotics have usually
been associated with smallness, whereas singularities are where a function and/or its derivatives
are unbounded. Yet, this connection is afforded by a proper understanding of transseries in a
region near anti-Stokes lines (these concepts are explained in the sequel).

This expository lecture is meant to introduce the reader to some key concepts of Borel
transform, Borel summation and transseries in the context of simple differential equations (for
other relevant material, see [1], [5] and [6]). Later on, we apply these to determine Stokes
phenomena and singularities of ODEs. We end the paper with a recent application to a nonlinear
PDE.



2 Classical Asymptotic Series and Their Limitations

Exponential asymptotics refers to study of terms that are smaller than any term of the classical
asymptotic expansion of a function.

Classical asymptotics in the sense of Poincaré analyzes behavior of a function as  — zo (see
for instance [21] and [2]). In most cases this behavior depends on the direction of approach (i.e
on arg(x — xo)). Having specified a point and a direction of approach, the objective of classical
asymptotics is to provide a formal series representation of the function in terms of a simpler set
of functions {¢y ()}, o, With the property
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However, this type of asymptotics is unable to distinguish between two functions f and g, if

f(x) — g(z) = o(¢x(x)) for any k > 0.
One of the simplest non-trivial example is the asymptotic expansion of the exponential inte-
gral:

Ei(z) = ]{w %tdt (4)

oo

Breaking the integral as f—l_ ot flz and carrying out repeated integration by parts on the second
term, it can be easily seen

= f(z) asz — 400 (5)

kle®
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Here, f(z) is the formal notation for the obviously divergent asymptotic expansion and ¢y (z) :=
ez %1, Since for any constant C, ¢ (z) > C for k > 0, the classical asymptotic expansion of
both Ei(z) and Ei(z) + C is given by f(z). The constant C in this case is exponentially small
compared to all other terms of the asymptotic expansion. In particular, this means for instance

T

Bi(z:C) :/ %tdt ~ (@)

c
for any complex C in the complex plane C. In particular (5) gives no asymptotic knowledge
of Ei(x;C) — Ei(x), since f(z) cancels out and it is not proper to write Ei(x;C) — Ei(z) ~ 0.
Thus, the description provided by classical asymptotics is fundamentally incomplete.



The same situation can arise in determining the asymptotics of a function f(z;¢) when a
small parameter ¢ — 07. For instance, if

flawse) ~ Y ¥ fu(z)
k=0

then a term that scales like e=%/¢ is beyond all orders of the the above asymptotic expansion
for fixed z € (0,00). Usually, such terms are neglected in many problems of physical interest;
however, there exists particular problems of interest where fundamental questions of existence
and symmetry cannot be answered properly without accounting for terms beyond all orders. We
illustrate their importance through a relatively simple ODE.

3 Role of Exponential Asymptotics: Illustrative ODE ex-
ample

Problem A: Consider the differential equation for u(z) :

Ecl2_u_.f-:du 9
de? xzdx

We require that as 2 — oo, with argx in [0, ) (see shaded sector in Fig 3 ).
u—0 (7
and that on the positive real z—axis: RT:
Imu =0 (8)

This problem, as posed above will be referred to as problem A.

First, at a formal level, through a repeated dominant balance procedure, a consistent asymp-
totic behavior of such a solution, assuming it exists, for small € is given by

1 « n
u(@) ~ 1 (2n)!;Tn 9)
n=0

Each and every term of the asymptotic series in (9) satisfies all the conditions of problem A
including (8). However, this does not imply that u(x) satisfies the same conditions, since there
may be exponentially terms in £ not included in the expansion (9).

Now, we explicitly show that Problem A does not have a solution because of such terms.
Through a routine use of variation of parameters, a solution to (6) satisfying (7) is given by

1 —12.2 [T dx' __—1/2.2 122 [Todx! _—1j2 2
u(z) = v —e® T —e" 7T —e T (10)
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This can be argued intuitively in the following manner. The argument is somewhat different
depending on whether or not the exponentials exp [£e~1/2z?] are large or small. In sector I of
Fig 3), bounded by argz = 7, where Re 22 = 0 (referred to as anti-Stokes lines), exponentially
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Figure 1: Stokes Sectors for Problem A

large contribution outside the first integral is balanced by exponentially small contribution from
the integral itself (owing to the choice of lower limit) to leave terms that decay algebraically to the
leading order. Again, for the second integral in sector I, the exponentially large contribution of
the integral itself is being multiplied by an exponentially small contribution outside the integral
to leave us with algebraically decaying factors. In sector II of Fig. 1, which is bounded by
the anti-Stokes lines argx = 7 and argx = %T’T, the exponentially large contribution from the
first integral is balanced by the exponentially multiple outside the first integral. Again, in this
sector, the exponentially small contribution of the second integral (owing to the choice of lower
limit) is balanced by the transcendentally large multiple outside the second integral. Thus in
Stokes sectors I and II, which include the sector of interest, argz in [0,7/2), it is possible to find
solutions to (6) that satisfy condition (7). Further, through integration by parts in (10), we can
™
x ’2
we can verify the the formal result (9). Further, we cannot add any nonzero linear combination
of e "7 and e=="""**" to the solution (10) as condition (7) will then be violated.
The arguments above can be made rigorous. By appropriate changes in integration variables

in the first and second integral, for argz in (0, §), we rewrite (10):

1 © 172 1 1
ule) = g [/0 e y{y—w2 Cy+a? H -

From Watson’s Lemma, we can calculate the classic asymptotic expansion for argz in (0, %),

once again verifying (9). Note, in particular, that (9) is valid on the anti-Stokes line argz = 7,
approaching it from either side. Thus coefficients of any possible exponentials on either side of

the anti-Stokes lines, which dominate the asymptotic expansion (9) on the anti-Stokes lines,

easily establish that 4 ~ ——— as x — oo for argz in [0, 7). By repeated integration by parts,




must be identically zero. However, this does not imply that that there are no exponentials in
the solutions for other ranges of arg z. Consider what happens as we cross argz = 0 (referred to
in a more general context as a Stokes line) and move to the region where argz is in (—7,0). We
notice from the exact expression (11) that in doing so we collect a residue from pole at y = z?

and obtain
1 e —1/2 1 1 21 —1/2_2
_ — Yy _ — z
u(z) = w12 [/0 dye {y gt H + 51/2° (12)

From Watson’s Lemma, the integral term in (12) still has the asymptotic expansion

1 & en
n=0
The additional contribution 8?}'2 e=s %% ig exponentially small for argz € (—%, 0); however,
it becomes dominant when argz is in (—3F, —Z). When argz = 0, (referred to as a Stokes line),

the coefficient of the exponentially small term is the average between the two sides. This is seen
by noting that in that case

1 *© —1/2 1 1 v —1/2 2
_ - y _ — T
u(z) = 172 [7[0 dye {y Ry H +game (14)

Note that (14) implies that on the real zaxis,

—-1/2,2
Imu(z) = +86%/2€7€ /2 (15)
which is nonzero. We note that transcendentally small terms that are usually subdominant now
become dominant since every term of the regular perturbation expansion (13) is identically zero.
Thus, from (15), we conclude that there are no solutions to problem A.
This problem is posed in the complex-plane. However, there are simple examples in the
context in a PDE in the real domain (See for instance, [19], §6), where exponential asymptotics
plays a crucial role whether or not a solution exists in the first place or in determining conditions

under which solutions exist.

4 Laplace and Borel transforms

If e=¢IPl F(p) € L'(0, 00), then it known that the Laplace transform

£F)@) = [ Folerdp (16)
0
exists and defines an analytic function of x in the half-plane
He={z:Rezx >c}

and continuous in its closure 7. and goes to 0 as x — oo in .. Further, the inverse Laplace
transform is well-defined for functions which are analytic in H., continuous on H. and go to



zero at a suitable rate as © — oo in H, and is given explicitly by the following integral in the
complex plane
1 c+io0
R I L a7)
2mi c—1i00
For Re p < 0, it can be shown that [£~! f](p) = 0 by closing the contour for (17) with a right-half
semi-circle and using Jordan’s lemma to estimate the contribution of the latter contour.

Laplace transform can be generalized along a complex ray. If e~¢IP| F(p) € L'(0, c0e) then

we can define .

[LoF](z) = /0 T e (p)dp, (18)

and this defines an analytic function of z in the half-plane Re [ze®?] > ¢. The formula for inverse
Laplace transform is similarly changed by a rotation through —8.
Consider z—? for any 3 > 0. We define its Borel transform in terms of a dual variable:

e
I(B)

where I'(3) is the Gamma function. It is to be noted that the Laplace transform £ applied to
the right hand side of (19) gives

L [?ﬁ(/j;] (z) = ﬁ /000 e PP pPldp = Fm(_;)/ooo P le 3ds =P (20)

More generally, Borel transform transforms one series

Blz~")(p) (19)

fx)=a78 Zakx_ak with a, 3 >0
k=0

into another series:
ak+5—1

F(p) :=[Bfl(p) = %

(21)
Because of division by T'(ka + #), it is clear that if f is divergent but for large k, ay grows at
a factorial rate comparable or less than I'(ka + B) (recall I'(n + 1) = n!), then F(p) will be
convergent. In the case when f(z) is convergent, it is clear from term by term application of
inverse Laplace transform that for p € HT,

L 'f=Bf (22)

However, it is to be noted that the Borel and inverse Laplace-transform are not the same.
For Re p < 0, £71f = 0; however, Bf is defined by the analytic continuation of the series
representation (21), which cannot be 0. B 5

However, generally, an asymptotic series f is rarely convergent. If the Borel transform B f
satisfies the following two conditions

1. The series for F'(p) = [Bf](p) is convergent in a neighborhood of p = 0,



2. Analytical continuation of F(p) along a ray argp = 6 results in e °IPIF(p) € L*(0, coe??)
for some ¢ > 0,

then it is clear that ~
(@) = [LoF](2) = [LoBf](x) (23)

is an actual function for argz € (—Z — 6, Z — ) for large enough |z|. Further, using Watson’s

2
Lemma, it is clear that

ka+B8—1 o

00 ooeig
~ —px R agp ka—B _ 2
) ;A e ey = ™ = (24

The process of Borel transform, followed by Laplace transform is called Borel summation of the
formal series f. If assumptions (i) and (i) above are valid, we call f Borel summable. The
association of f with an actual function f given by the expression (23) is not unique, however
because of the different values of 6 possible. We can make this association unique by choosing
0=—argz=—9¢,ie

/(@) = [£-sBfi(x §:f (25)

where 37 is the notation for the Borel-sum L_4B. However, it is to be noted that in general, Bf
will have singularities, when analytically continued in the complex p-plane. If —¢ is a singular
direction in the p-plane, then the definition (25) is not adequate. However, it is possible [10] to
modify the definition of (25), a process called “Balanced averaging” that involve weighting over
different possible paths of integration avoiding singularities, that yields good algebraic properites
of the association between f and its Borel sum f.

The rays in the complex-z-domain characterized by argx = ¢ for which argp = —¢ is a
singular direction for [B f] in the p-plane will be referred to as Stokes lines. If ¢, is a Stokes line,
we define its associated anti-Stokes lines at argz = ¢ + §. These Stokes and anti-Stokes lines
play a crucial role in asymptotics, as will be seen later.

We define the Borel Transform of the product of series f and § through the relation:

B[f3) = [Bf] * [B] (26)
where the convolution operation * is defined as
[F = G](p / F(p—s)G(s)ds (27)
We note that for «, f > —1,
' T(a+ DB +1)
(&7 — a+pB+1 @1 — B — a+B+1 92
pxp’ =p /OT( 7)Pds = p Fat1 512 (28)

Thus, convolution of two formal series can be computed using:

ad N = N > D+ k+1DI(B+j5+1
lz ' ] * |2 = D e : N +k)+f+ 2J) | 29
k=0 j=0 j,k=0

It is not difficult to prove that that if f and § are Borel summable, so is the product f§.



5 Borel Transforming a simple differential equation

A well-known method to solving elementary differential equation, given in any text book, is to
use a series method of solution. Frobenius theory guarantees convergence of the series, provided
the point of expansion xg is a regular-singular point. This convergent series representation is
also asymptotic as x — x¢ as is true for any convergent series. The series method also works for
some nonlinear differential equations also when the linearized equation in the neighborhood of
T = xo is a regular singular point. For irregular singular point, there is no such theory. Indeed,
consider for instance the simple differential equation

1
Yy +y= =2 (30)

where we seek to determine the asymptotic behavior of the solution as x — oco. Notice that
£ = oo is an irregular singulary point of the differential equation. To see this, we introduce
transformed variables z = 1/z, y(1/2) = Y (2) to find —22Y' +Y =22, or Y’ — ZXQ =-1.2=0
(z = 00) is clearly an irregular singular point and therefore, we are not guaranteed that a series

will converge. If we try
oo

ag
y(z) = ; R’

and plug it into (30) and equate different powers of L, we obtain ap = 0, a1 = 1 and the
recurrence relation ar = kag_1 for k > 2. Thus, we obtain formally

y@) ~ 3 o = (o) (31)

However, the formal asymptotic expansion (31) has no free parameters, as expected for a general
solution to (30). If one solution y = y, to (30) has the asymptotic series §, so will the general
solution y = y, + Ce™® to (30) as Re z = +o0.

Noting that the divergence of § is only at a factorial rate, we Borel transform the series to
obtain

Y(p) = [Bjl(p) = >_p* = 1%3
k=1

Then, the Borel sum of §, for argz = ¢ € (0,27) is given by

coe” ¢ coe” —px 1 o] —s
w@ = [ emvea= [ = [T (32)
0 0 - 0

p T T—s

It can be directly verified from the last expression in (32) that yo(z) is a solution to the differential
equation (30). Further, applying Watson’s Lemma,

i} i¢

ocoe” ocoe” 1 9
yo(x) ~ / e "Ppdp +/ e PpPdp + ...t = -+ —Zt-.=7 (33)
o o 2z
The general solution of the differential equation (30) is of course
y(z) = yo(z) + Ce™® (34)



If we require that y(z) — 0 as  — oo along any ray for which argz € (%, 37”), then that solution
is uniquely given by y(z) = yo(z) since Ce ® is not small for large z on such a ray, where as
Yo ~ ¥

As we cross argx = 0, the representation for yo(z) changes because of the singularity of Y (p)
at p = 1. To find the analytic continuation of yo(x) we deform the integration contour in the
s-plane, as shown in Fig 2,

Ims

Res
&

Figure 2: Contour deformation for analytic continuation of yo(x)

Collecting the residue at s = z, we find we obtain for argz € (—2m,0),

1 [ se™*
yo(z) = —/ %€ ds — 2mie®
z )y z—s

There is the birth of a new term e~? as we move across argz = 0. This line, is therefore, a
Stokes line. Nonetheless, despite this new term, yo(x) ~ § remains valid for argz € (—%,0) since

the exponential term is subdominant to every term in §. However, as we approach argz = —7,

things begin to change. 2mie ” is no longer negligible compared to §. argz = —7 is an anti-
Stokes line, where hitherto exponentially small term born at a Stokes line first becomes important
enough so that yo ~ § is no longer valid. Indeed, for argz € [—2m, —Z], yo(z) ~ 2mie®. This
is an example of Stokes Phenomena, where an analytic function yo(z) has different asymptotic
representation for large |z| as arg x varies. Indeed, a similar analysis as we cross argz = 27 from

below shows that

1 [ se™*
yo(z) = —/ %€ ds + 2mie®
z )y z—s

for argz € (2m,4w). This means that largest sector over which the asymptotic relation yo(z) ~
g(z) is valid is argz € (—Z, 3x), of width 3.



6 Borel Summability, Gevrey-Asymptotics and Least-term
truncation

Recall that for a convergent power series representation of a function, there is a unique corre-
spondence between the series and the function it represents. This section is motivated by the
question whether or not an asymptotic series can be made to correspond uniquely to a function
with additional assumptions.

Consider

fl@)=> ¢z (35)
j=0

be a formal power series and f a function asymptotic to it in the sense of Poincaré. This
definition provides for large z estimates of f(x) within o(z~"), N € N, which are not sufficient
to pin down a unique f associated with f. Simply widening the complex z-sector where f ~ f
is valid does not change this situation either, since we can always choose m large enough and
suitable complex constant ¢ so that exp [—cml/ m] is smaller than any term in f in a sector of

width mz, which includes the sector for which we require f ~ f.
It is then reasonable to attempt to

1. Improve the quality of estimates of f from f to within O (exp [—const.|z|]) and

2. Seek a sector wide enough for f ~ f so as to rule out a contribution such as exp [—cwl/ m].

One important technique in this class is due to Gevrey.

Definition 1 Consider a formal asymptotic series f(x) of the form (85). This series is Gevrey
of order 1/m, if
lek| < CLCE(ED)™ for some C, Cy (36)

We define the N-term trunction of (85) as f¥(z). i.e.
: N
M) =Y era®
k=0

Remark 1 Note that if we change variables © = y™, then f(z(y)) is Gevrey-1. This follows

m m/2—1/2
from using Stirling’s formula N! ~ v/2rNe N N¥ for large N and noting 8:21)! ~ (27::127"+1/2

Hence, it is enough to concentrate on the case m = 1.

Definition 2 Let f be Gevrey-1. A function f is Gevrey -1 asymptotic to f as x — oo in a
sector S, if for some Cs and Cy and any N € N,

(@) = FN(@)] < G303 "IN + 1)1 for 2| > Cy (37)

i.e. the error f — fINl is of the same order as the first omitted term in f.

10



Lemma 3 If f is Gevrey-1 and f is Gevrey-1 asymptotic to f, then f is approzimated by f
with exponential precision. Let N = [|x/Cs|], the integer part of |x/Cs|; then for any C > Ca,
we have from Stirling formula

F@) = fN(z) = o (e71#1/7)
PRroOF. From (37), with the choice of N as given above, we have
£ (@) = fM(2)] < CsN-VHD(N 4+ 1)1 = O(VNe ™)

by using Stirling’s formula for N!. O

Remark 2 Usually, the imprecision implied by (37) is larger than potential terms beyond Gevrey-
1 series f, at least in some directions. This means we could still have two functions with the
same Gevrey asymptotic series. However, if the estimate (37) holds in a sector Ss,, of width
bigger than w, then (37) cannot hold for more than one function f(x).

On the other hand, with a sector Ss. of validity of (37), f is Borel summable and f is
precisely the Borel sum of f.

Theorem 4 [see [1]] Let f = Yo, ckx—* be a Gevrey-1 series and assume the function f is
analytic for large x in

Ssr = {a:: |argz| < g-i—é}
for some § > 0 and Gevrey-1 asymptotic to f in Ss. Then
1. f is unique.
2. f is Borel summable and f = >s f.
B(f) is analytic at p =0 and in the sector S; = {p : argp € (—9,6)}

Conversely, if f is Borel summable along any ray in the sector Ss for |argp| < 6, and
uniformly bounded in any closed subsector of Ss, then f is Gevrey-1 with respect to its
asymptotic series f in the sector |argz| < § + 4.

S

Remark 3 Theorem 4 will be proved after we recall some properties of Laplace and inverse
Laplace Transform in the following:

Proposition 5 Assume 6 > 0 and f is analytic in et® H defined as
et H = {x s argz| < g+(5}
and assume f continuous on its boundary and that for some K > 0 and x € e H, |f(x)| <
K/(1+ |z[?), then
(i) LLT1f = f and in addition, [|C7" f]|e < K.

(i) If § > 0, then F = L™ f is analytic in the sector Ss = {p # 0 : |argp| < 6}, [|F|loo,s; < &
and F(p) = 0, as p — 0 along any ray in Ss.

11



PRrROOF. Note that using Fubini’s theorem:

/ dpe‘pz/ eipsif(is)ds:i/ dsf(is) (/ dpe_pweipsdp>
0 —0o0 —0o0 0

|7 g = [T i

— r—z

—1i00
Hence LL™1f = f. The bounds on ||[£7! f||« simply follow by noting first that for p € Rt

1 [~ K K
<= = _ds=—
21 ) o1+ 82 2

1 /oo e f(is)ds

2w J_ o

while for other p € S5, we rotate the contour of integration the s-plane so that ps is real and
ranges from (—oo, 00).
As far as (#4), we note that for §' < 4,

I L T

The latter integrand is clearly L' in s and analytic for p € Sy ; so the integral is analytic for
p € Ss. Since this is true for any §' < 4, it follows that F' is analytic in Sj.
Finally, we change variables and deform contour so that

1
_27|'Zp C

F(p) e*f(s/p)ds
where contour C is consists of two straight lines, one connecting iooe™®" to s = 1 and the other
from s = 1 to iooe®’. It is clear on this contour that [p~f(s/p)| < %,
bounded by a constant. It follows easily that |F(p)| - 0 as p — 0.

O

whereas € is

Proposition 6 Let F be analytic in the open sector S, = e®R*, with ¢ € (=5,5) be such
that |F(|ple’®) < g(|p|) for some g € L'[0,e) and bounded outside the interval. Then f =
LF is analytic in the sector S, = {z:|argz| < Z +6} and f(z) = 0 as |z] = oo, argz €
(-2 -6,2+49).

3 03

PRrOOF. For any ¢ such that |@| < 4, it is clear that

@

[ errom
0

sAemﬂmwmmm+/ e Ipllslcostotare) prgp (38

where M is an upper-bound for |g|. For any argz € (—Z — 4,2 +4), it is possible to choose
¢ € (—6,0) so that ¢ +argz € (—%,%). Thus, the integral above exists. Since the integrand
is analytic in z and L' in p on the ray of integration, it is clear that f = LF is analytic in S,.
Further, to show that f(z) — 0 as £ — oo in S, we note that for given ¢’ > 0, we can choose ¢

12



sufficiently small, but independent of z, so that the first integral on the right of (38) < % For
the second integral, we choose |z| large enough so as to ensure < %' |

Proof of Theorem 4 ~ ~

Without loss of generality, we may assume f° and fI!l =0, i.e ¢g = ¢; = 0. Also, we can
shift the origin of z sufficiently to the right so that it is possible to write |f(z)| < # for all
T € S>ﬂ—. 5
1. If both f; and f> is Gevrey-1 asymptotic to f, then by Lemma 3, for some constants C, Cs,
we have

|f1(z) = folz)| < Cre~ 212!

in a sector S, of opening more than m. From Proposition 5, £L~1(f; — f2)(p) exists and is
analytic for argp € (—4,d) and from the exponential bound, the integration path for p € (0, Cs)

/ - (f1(2) = fa(2))e dx

—1400

can be closed with a right semi-circle or radius R — oo, with no resulting contribution because
of exponential decay of integrand. Hence £~ (f1 — f2)(p) = 0 for p € (0,C3). From analyticity,
L7 (f1 — f2)(p) = 0 for all p. Laplace transforming, we get fi — fo = 0.

2. & 3. By change of variables g = f/C; and g1 = f/C1 and y = 2/Cs, § and g satisfy the
same relation involving y, as does f and f, except that corresponding C1 = 1 and Cy = 1. Thus,
without loss of generality, we will assume C; = 1 = C; for f and f. From the bounds on c,
we see that the series F; = Bf is convergent for |p| < 1. From Proposition 5, F(p) = L' f is
analytic for argp € (=4, 9), and is uniformly bounded if | arg p| < § — &, for any small € > 0. We
now show that F(p) is analytic for |p| < 1. Taking p real, p € [0, 1), we obtain

. i00+N 5
|F(p) — FIN=1(p)| < / N djs||f(s) — fIN"!(s)| exp [Re (ps)]
—i00+
0 NlepN w/2
< N!e”N/ i _’thlN = N;_l / ) cos™V 2 ydy < CN3/2eP~DNywhere we use t = N tany
— oo —m/2

Note that the last term above vanishes as N — oo, implying F' = F} for p € [0,1). From analytic
continuation F' = Fj for all p. In particular, F' is analytic for |p| < 1 or in the sector | argp| < &

(for any |p|).
4. Let |¢| < §. We have, from integration by parts,

) = PNy =N

On the other hand, F is analytic in S, for some a(¢$)neighborhood of the sector {p : | argp| < ¢}.
Estimating derivatives through Cauchy’s formula on a circle of radius a (see Fig. 3) so that either
|argp| < ¢ or |p| < 1 for points on the circle, |F( (p)| < N'a(#)]~N||F(p)|lcc;s.- Thus, with
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|6] < ¢ chosen so that v = cos(f — argz) > 0 and maximal, we have

—i6

@)= Y@ = o [T Py

a

00
< N!aiNl-'EliN”F”oo;Sa/ e*é‘\z\’}‘ds — N!aiN'YillxliNil”F”oo;S
0

Thus, Gevrey-1 asymptotics follows, and the proof of Theorem 4 is complete.

Figure 3: Radius a(¢) circle for estimation of F™)(p) on ray argp = —6

7 Borel analysis for a nonlinear ODE

The steps carried out for the linear ODE 3’ + y = w% in the Borel summation process can be
carried be out in practice only for a limited number of problems. Even if we know the full series
representation for g, and that the Borel transform B leads to a convergent series representation,
it is nearly impossible to determine if analytic continuation on a complex ray satisfies exponential
bounds to ensure Laplace transformability. Instead, for solutions to differential equations, we
can apply the Borel Transform on the equation itself and study the analytic properties of the
transform itself, assuming a priori that it exists.
We illustrate this in terms of a simple nonlinear version of (30):

1
y’+y=w—2+y2 (39)

We seek a solution y that behaves like 72 as  — oo, for argz € (—% — 6, % —6) for some

6 € (—2m,0). If indeed y has a series in inverse powers of z, starting with =2, and if Y (p) := By

14



is convergent, then it is clear from computation of the series’ coefficients that By’ = —pY (p) and
so, Borel transforming (39), Y (p) must satisfy

~pY +Y =p+Y +Y implying Y (p) = fp + [Yl*i)(p) = NY](p) (40)

where the symbol N is an operator, defined by the equality above.
We then show that the operator N is a contraction operator in the space of analytic functions
in a domain D that are exponentially bounded at oo, where

D:={p:|p|<1—-6or argp € (—2m +4,—9)} (41)
It is convenient to define the norm

1Y, = Mo 216111;(1 + [p|*) exp[-v|p[] Y (p) (42)

where v > 4 will be chosen sufficiently large, as described later, while the constant M is defined
by

2(1 + s?)[log(1 + s?) + sarctan s]
= 3.76..
s(s2 +4)

We consider the Banach space A of analytic functions in D, continous in its closure, equipped
with the norm ||.||,. From the exponential bound inherent in the definition of the norm, it is
clear that for any fixed argz € (—Z, 37), Laplace transform L£yY (z) exists for large enough |z
when § is so small that § € (=27 + 6,6) can be chosen so that argz + 6 € (—%,%). How large

|z| has to be depends on how close argz is to the end points of the interval.

My = sup {
s>0

Lemma 7 IfY € A, and Y (p) ~ Cp* for small p, ||Y||, < KT(k+ 1)v=* for v large enough
and K independent of v and k.

PRrOOF. Note that for |p| < € < 1, we have

KT(k+1
sup 1+ [pMe "y (p)| < Cv* sup e Pl(plv)* < CvFkke™* < %
p|<e pl<e

Since for |p| > ¢, (1 + |p|>)e="?I|Y (p)| is exponentially small for v large. Hence, the Lemma
follows. O

Corollary 8

K
%] <% (43)
1-p|, v
for some constant K independent of v
Lemma 9 IfY;, Y] € A, then Yy xYs € A and
Y1 * Y|, < [Yallo|[Yally (44)
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ProOF. First, note that

Vi « Val(p /Y1 Walp — s)ds = /Yl(psYz p(1 — 5))ds

and the latter integrand is clearly analytic in p and L! in s; therefore, integration over s preserves
analyticity in p. Continuity on the boundary 9D is also inherited from continuity of Y7 and Y5
on the boundary.

Also, for s on a straight line connecting 0 to p € D, we have |p — s| + |s| = |p| and |p — 5| =
|p| — |s|, we obtain

ds
Yy Y. <| | vi(p-s)Y: <e'?y; YVM/
DBl @I <] [ Vi - a(e)ds] < PN TR () o)
< ev!Ipl v v 45
_m” 1“1/“ 2”1/ ( )

from which (44) follows. O

We now have the following result addressing the existence and uniqueness of the solution to
the integral equation (40).

Lemma 10 For v large enough, the mapping N is a contraction mapping of the ball
2K
B, {Y Y e AV, < —}

into itself and thus the integral equation (40) has a unique solution in B, .

PROOF. Since 1/|1 — p| is bounded in D, it follows that

‘—[Y*Y]( )‘<C|Y*Y|<C ||2|| [F

Therefore, for Y € B, we have

K K 4CK? 2K
INIYll, < — + OV, < — + —5— < —
14 14 14

14

for sufficiently large v. Thus, N maps B, back to itself. Now we note that
Vi#Y - VsV =V % (Vi - Y2) + Vo % (Vi - o)

and so for Y7, Y5 € B,

4CK

H—YY vew)| =Ky

Therefore,

ACK
V] - NY3]ll, < —[IY1 = Yall,

and so A is a contraction mapping of B, into 1tse1f. The rest of the proof follows from the
contraction mapping theorem. 0O
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Remark 4 Since § > 0 can be as small as we want, the integral equation (40) will have analytic
solution Y (p) for any |p| <1 and argp € (—2m,0).

Lemma 11 For fized argz € (—7, 2n), there exists a solution to (39) for large |z| in the form

vo(z) = LoV = / e=P2Y (p)dp,
0

where 0 € (—27,0) is chosen so that 6 + argz € (—%, g) and where Y is a solution to the

nonlinear equation (39). Furthermore, for large |x|, it has the asymptotic expansion:

oo
) ~z? 4 E apxrk
k=3

PROOF. Since Lemma 10 guarantees Y and therefore Y «Y to be analytic at the origin, it follows

that
oo
p) =Y A"
k=0
and therefore, using (28),
Y*Y](p)=p Z Bip*

for some constant By, related to A,...,Af.
From the Taylor expansion of p/(1 — p) at the origin, it follows from the integral equation
(40) that Ag = 0. It is clear that By = A2 = 0 as well. Therefore, A; =1 and

oo
= Z AkPk
k=1

The expression for y(z) is convergent for all sufficiently large |z| since Y is exponentially bounded.
From Watson’s Lemma it follows that

ZAk k+1 72+Zakx =j(x

where a, = A, _1T(k).

The proof that yo(z) satisfies the differential equation (31) follows from noting that L4[—pY] =
yh and that Ly *Y = y2 as follows from using Fubini’s theorem in the convolution, knowing a
priori that the functions are integrable. O

8 Singularity of Y(p) at p =1 and Stokes Phenomena

Recall that we were considering
1
y+y=—+y (46)
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and found a Borel summable solution yo(z) for |z| sufficiently large with argz = ¢ € (—Z, 27)

in the form .

wle) = [LaY)@) = [ V(e rdp (47)
0
where Y (p) solves the integral equation
p YxY
Y(p) = — 48
0= T2+ Ty (18)

and € (—2m,0) is chosen to ensure arg(pz) € (—%,%). If we choose instead ¢ suitably in
(0,27), and define

6

fio = / Y (p)e " dp, (49)
0

then following essentially the same arguments as for yo, it follows that g is a solution to (46)
with asymptotic behavior gy ~ §(z) for argx € (—%77, %) Though both yy and gy are Laplace
transforms of the same function Y (p) they are not analytic continuation of each other because
of singularities of Y (p) on the positive real axis at p = 1, p = 2, etc (see next section). Indeed,
for argz € (=%, ), it is seen by contour deformation that

yo(x) — Jo(z) = /C’Y(p)e*’””dp (50)
where the contour C' is shown in Fig. 4.

Imp

G Rep

Figure 4: Contour C in (48)

The leading order asymptotic contribution from fc for large z in this sector is of the type
Se~®x for some constants S (called Stokes constant) and 7. The precise value of v depends on
the nature of leading order singularity of Y (p) at p = 1. If it is a simple pole, as for the linear
problem, then v = 0. We will determine this to be the case in the next section.

Relation (50) provides the analytic continuation of yo for argz € (—2m,0). The consequence
of this is that as argz approaches —% it is no longer correct to write yo(z) ~ §(z) when this

18



anti-Stokes line is approached, since go(x) ~ g(x), but e ® coming from the asymptotic behavior
of [, is no longer small compared to §(z). This is referred to as the Stokes phenomenon, where
a single analytic function (in this case yo) has different asymptotics in different sectors of the
complex plane. This is observed for the nonlinear problem as well as it is for the linear problem
y' +y = 1/x2. However, in the nonlinear case, the consequence is more catastrophic. As soon as

e~ becomes sizable, so do e 2%, e 732, ., etc, where such terms arise due to nonlinearity. As we
shall see in a latter section, this has the cumulative effect of inducing singularities of yo(x) near
the anti-Stokes line arg x = —7 for large |z|. Similar arguments can be made for the analytically

continued o near the anti-Stokes line argz = 3.

9 Analysis of singularity of Y (p) at p=1

We recall the Borel plane equation for Y (p) satisfying:

1-pY =p+Y=xY (51)

It is convenient to define
H(p) =Y(p) for |p| <1—¢€ and H(p) = 0 otherwise (52)
h(p) =Y (p) — H(p) (53)

We want to look at the equation (51) in

Die:={p:|p—1| <e,arg(l—p) € (—m,m)}

Equation 51 becomes
(1-ph(p)=p+Hx+xH+2H+xh+hxh (54)

Lemma 12 For p € (1 —¢,1), for e < 1, hx h(p) = 0 and analytically extends to the zero
analytic function in Dy ..

ProoF. First, consider

sincee—(1—-p)<e<l—e. O

Lemma 13 Forpe (1 —¢,1), withe < i,
2e 1—e
HxH= Y)Y (p—s)+ Y(s)Y (p— s)ds
e—(1-p) 2e

and the above expression extends to an analytic function for any p € D .
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PRroor. Note that for p € (1 —¢,1),

1—¢

H(s)H(p — s)ds :/ H(s)H(p— s)ds

e—(1-p)

1—e

(H+H)p)= | H(s)H(p—s)ds = /

0 e—(1-p)

/4

=/ B Y(s)Y(p—s)ds:/ L Ye)Yo-s)ds+ [ Y)Y (- s)ds

—(1-p) e—(1-p) 2e
Since Y (p — s) is analytic for p € D; . for any s in the range of integration, the second part of

the Lemma follows easily. O

Lemma 14 Forpe (1-¢,1), fore < 1,
P P
(H * h)(p) = H(p—s)h(s)ds = / Y(p—s)h(s)ds
1—e 1—¢
This extends it to an analytic function for any p € Dy .

Proor. First for p € (1 —¢,1) we have

0 —1+4¢
= ' H(p— s)h(s)ds = ’ Y (p — s)h(s)ds

1—e 1—¢

H*h(p):/OpH(s)h(p—s)ds: _EH(s)h(p—s)ds:/p H(p — s)h(s)ds

Since Y (p—s) is analytic for p € D; . for any s in the range of integration and h(s) is known to be
integrable on any ray that avoids s = 1, it follows that the above provides analytic continuation
for (H = h)(p) for any p € D1.. O

Theorem 15 For p € Dy, h(p), and therefore, Y (p) has the ramified representation

_Al(l_p)

Y(p) = 17

—log(1 —p)Ai(1 —p) — A5(1—p)

where A1(z) and Az(z) are analytic for |z| < e.

PrOOF. For p € D, is convenient to define ¢(p) = f1p_5 h(s)ds. Then, it is clear that on
integration by parts and using Y (0) = 0, it follows that

P
(Hxh)(p)= | H'(p-s)a(s)ds
1—¢
Hence in this domain, (54) can be rewritten as
1

(1-p)d'(p) =p+ H* H(p) +2 . H'(p—s)q(s)ds + 2 /f H'(p — s)q(s)ds (55)
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We define z = 1 — p and ¢(p) = Z(1 — p). Then, replacing 1 — s = zt in the above integration,
we obtain

_27'(2) = A(2) + 22 /0 H'(2(t — 1)) Z(t)dt (56)

where A(z) = (1—-2)+(H*H)(1—2)+2 fll—s H'(1-2z—s)q(s)ds. Dividing by z and integrating
from z = £ (where Z(g) = 0) to z, we obtain

Z(z) = —A(0)(log z — loge) — /z 714('2,) — A0 dz' — /0 7A(ZI) — 4(0) dz'
0 £

2 / Y [ / H - 1))Z(z't)dt] 2 / “d [ / H - 1))Z(z't)dt] = Zo(2)+L]Z)(2)
€ 0 0 0 (57
We now claim that Z(z) is a ramified analytic function for |z| < & with the unique decomposition
Z(z) = A1(2)log z + Aa(2)

where A; and A, are analytic in |z| < . To show this first note that
z 1
/ iz [ / VI (t — 1)[Ay (') log(+'t) + Ay (z’t)]dt]
0 0

. /0 dr [ /0 V' (or(t — 1))[As (278)log (27t) + AQ(th)]dt] = 24 (2) log 2 + 24s(2)

for some analytic functions A, and A, related to A; and A,. Thus, the linear operator L
preserves the ramified analytic structure of Z(z). If we introduce the norm in this space

1Zllr = l41llco + | A2]lo

Then we find (since |z| < €),
IL[Z]|r < Kel|Z||r

Thus, Z(z) indeed has a unique solution in this ramified analytic space. Since the solution to
(51) is unique, it follows that Y'(p) has the analytic structure

P
Y(p')dp' = Arlog(l —p) + A,
1—e
for p near 1. So, the ramified analytic structure of Y(p) at p = 1 is given by the analytic
representation:
_ Ai1(1-p)

Y(p) = 17

— Ai(1-p)log(1-p) - A3(1-p)

O
Remark 5 The above relation proves that the leading order singularity of Y (p) is indeed a simple
pole with residue S = A1(0); however, unlike the linear problem, p =1 is also a branch point as

shown by the presence of logarithmic term. This is recognized in choice of contour fC in Figure
4 by allowing a branch cut along the positive real axis from p =1 to p = +00.
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Remark 6 Having resolved the singularity at p = 1, we can repeat the analysis near p = 2 by
considering Y (p) known in the interval (0,1 + ¢). The singularity ot p = 1 is found to induce a
singularity ot p = 2. Inductively, we can prove that this is true for positive integer p. This gives
rise to terms like e 2%, e73%, ..., in the asymptotics of fc Y (p)dp for large x.

10 General solution to (39)

Having found one solution yo(z) in Lemma 11, we seek the representation of the general solution
of (39).

Lemma 16 The most general solution to the differential equation (39) that goes to zero as
|z| = oo for argz = ¢ € (=%, %) is of the form

y(z) = yo(z) + yr(z)
where y.(z) ~ Ce™® as x — oo in the right half-plane for some constant C.

PROOF. Since yg and y are solutions to (39), y,. satisfies

Yr +yr = 290ur + y; (58)
Therefore,
x
yr(z) = / e " 2y0 (t)y, () +yi ()]dt + Ce™* == Mly,](z) (59)
0
for some constant C' and zo is a point on the complex ray argr = ¢ € (—g%) and the path

of integration is taken radially outwards from z to z. We will consider the domain |z| > |zo],
argz = ¢ = argxg. Define the ball

B. = {f: f(z) continuous on z = re’?, |zo| <7 < 00, || flloo < £}

in the Banach space of continous function, equipped with sup norm. It is to be noted that for
any € > 0, this ball contains y,(z) that vanishes as |z| — oo when |zg| is chosen sufficiently
large. We now claim that M is a contraction mapping of B, onto itself for € chosen sufficiently
small and |zg| chosen sufficiently large.

To see this, we note that on the contour of integration, ¢t = se’®, where |zo| < s < r = |2|.
So, using [yo(t)| < K|t|?

Ml < |Gl leme

|zo]

—(r—s)cos K
0= [ o)+ bl s

~ 1 K

<|C —|zo| cos ¢ oo \ 2 <e
< [Cle + oosd |l + el <
for sufficiently large |zo|. Further,

T

K
Ml =l < [ e 100 [ Ky = yal + s )+ 029l 5) = 1206 s

|zol
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1 K 9
Y (W + 5) lyr,1 = yr2lloo
Clearly this is contractive for small enough € and large enough |zo|. Thus, for given C, there is a
unique solution y, to (59) that satisfies the condition y, — 0 as Re £ = +o00. Thus, the general
solution to (58) that satisfies y, — 0 is a one-parameter family of solutions, characterized by
constant C' in (59).

We will now show that this solution has the the asymptotic behavior given by y, ~ Ce™? for
some constant C, related to C.

It is convenient to define z(z) so that

yr(x) = Ce ™™ [1 + 2(z)] (60)
Then z(z) satisfies
' = 2yo(x)(1 + 2()) + Ce ™ (22(2) + 2°(x)) (61)
Therefore,

T

z(z) = /w (2yo(t) + 2Ce™t)dt + / [(2yo(t) + 2Ce)2(t) + Ce™[2(t)]?] := Nz](z) (62)

coeid coeid

The constant of integration implied in going from (61) to (62) is taken to be 0, without any loss
of generality. This is because otherwise, this would merely correspond to a different choice of C
in (60).

It is convenient to define

20(x) = /w . [2y0(t) + Ce™"] dt

For |z| > R, with R large enough, it is clear that ||2o||c < %. Also, note for [|2]|oo < %, we
have

K\ K 2K,
IV[2]lloo < #Hzr”oo +1Clllz 1% < ?0
for sufficiently large R. Furthermore,
KK 41K, e—Rcos¢
IN[1] = Nzsllloo < =557 l121 = 22llo0 + ——5——Il21 = 22|00

= R2

R

Thus, it is clear that unique solution, with z(z) — 0 as |z| — oo for ¢ = argz € (—Z,Z). Given

this unique solution z(z) for given C, we define §j(x) = Ce™*(1 + z(z)) It is clear § satisfies

j= / e~ 20 (1)) + 52 (1)]dt + Ce™

coeid

implying that

where



Thus g satisfies the same equation as y,, which is known to have a unique solution for given
C. Therefore, y. = § and since z(x) = o(1) as * — oo in the right half-plane, it follows that
yr ~Ce ?[1+0(1)]. DO

Lemma 17 For argz = ¢ € (—g, %),
yr(@) =Y (Ce *)*yx(a)
k=1
where yi () ~ E;io ajrr .
PRrRoOOF. We substitute the above into (62) and equate like powers of Ce™? to obtain

k—1

Y + (1= k)ye(z) = 2900k + Y Ym¥h-—m (63)
m=1
This gives rise to the integral equation:
z k—1
Yr = e(kfl)z/ e*(kfl)t l2y0yk + Z YmYk—m (t)dt (64)
oo m=1

Since y,(z) ~ Ce *[1 4+ o(1)] as z — oo, it follows that an additive term of the form Cje(*~1)®
in going from (63) to (64) has to be zero.
We now show this is indeed the case. We decompose y, = ax,0 + 2, where ay o for k > 2 is

determined recursively from
k—1

(1 — k’)ak’o = Z Ak —m,0am,0

m=1
where a1 9 = 1 (It is clear from the recurrence relation that |axo| < A for some constant
independent of k.) Then, zj satisfies

2 = ek Dz /z o—(k—1)t

k—1
l2y0(ak,0 + Zk) + Z {(ak_m,o + Zk_m)(am,o + zm) — ak_m,oam,o} (t)dt (65)

m=1

It is easily proved that in the space of continuous functions with the norm

I£1] = S < oolz||f(z)] < oo

zo|<|z|

that the right side of (65) is a contraction mapping of a small ball in that function space onto
itself, when |zg| is sufficiently large. Thus, y; = a0 + O(1/z). We can continue this process of
peeling out higher order terms in y; by formally determining

Qg1 ag,
Yk = Qg0 + 7 + ...+ :L'—"T +yr(z)

and demonstrating that yr(z) = O(z~(m*tY). O
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Remark 7 The results above show that the general solution to the nonlinear equation (1) that
goes to zero as Re £ — 400 is of the form

y(z) =Y (Ce ™) Fyi(w) (66)

k=0

where -
ye(@) ~ Y- = g (a) (67)

k=0

with agg = 0 = ag,1. The resulting double asymptotic series in powers of e* and 1/z:

y(z) ~ Ze_kmgjk(x) = Z Z (Ce_z)ka::—’mm (68)
k=0 k=0 m=0

is an example of a level one transseries. Note that each coefficient ay. , of the formal asymptotic
expansion can be determined from a formal algorithmic process of equating like powers of 1/x
and Ce™*. While gy, is generally divergent, the representation (66) in terms of actual functions
yr(x) is actually convergent. The function yy is the Borel sum of §, after a suitable constant is
subtracted from both yr and Gy, i.e.

Yr(z) = aro + LoB(Jr — ak0) (69)

for constants a0, where yr ~ aro as x — 0o in the right-half plane. This follows from Borel
analysis on equation (63), similar to the one we have seen for yo(x). Borel analysis also shows
that [B(gr — ak0)](p) has generally singularities at p = —1,-2,...,—(k — 1), in addition to
singularities at the positive integers. There is no singularity at p = 0, however. This means that
the constant C appearing in the transseries representation (68) can only change at argz = 0 in
the interval (—%,Z).

11 Transseries and singularities of y(z)

Having established a general representation for solution to (39), we now consider the problem
of determining singularities of y(x). From the transseries representation (68), written out in the
form:

Oaj ZZ C —z\k ka]

= : € —

y=) —+ (Cemm)F—
7=0 k=1 j=0

it follows that if we approach argz = 7/2 from below, the terms (Ce~?)* are no longer smaller
than all powers of . The asymptotic series in the sense of Poincaré:

oo

L aop,;
=0
cannot remain valid. Indeed, there exists a region near the anti-Stokes line argxz = 7 where

e %% > g1 for any k. In that case, interchanging the order of k¥ and j summation, the formal
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transseries results suggest that

y=in+ Y53 [y (e ) = 3 2O

j=0 k=1

| —

8

where ¢ = Ce®. Since fo(z) = O(x~2), it follows that we may expect that in this region, the
leading order behavior is given by y(z) ~ Fo(Ce™*), with Fy(§) ~ £ as £ — 0, since a1 = 1.
Instead of going through a complicated process of summing up Y ;- axoé® to find Fy(€), it is
more convenient to go equation (1) and seek a two-scale solution! in the form

y(z) = q(&,2)
Then, (39) is equivalent to solving
1
—§Q§+Qz+Q=P+q2 (70)

To the leading order, we seek a = dependent solution to (70). This gives rise to

2
g +¢" =4

This can be solved explicitly

€
0 —

Since aj 0 = 1, it follows that for small &, it follows ¢(¢,z) ~ £ as & — 0. Therefore, it follows
that C; = 1 and therefore,
3

0 _>
q(€)—€+1

There is an infinite set of poles of ¢°(Ce™?) at x = x5 = im + 2inw + log C for postive integer n
large enough to justify asymptotics for z >> 1.

To justify that the actual solution ¢(z, &) has similar singularities nearby, we need to prove
that if we decompose

(71)

Q(fa IE) = q0(£) + r(‘fa SU)
then 7(£,z) can be uniquely determined and that for large z, r(£,z) = O(z~1). We note that
r(&, x) satisfies:
1
—re +1p + (1 —2¢"r = s +r?
Borel transforming in z, we obtain:
—€R:+(1-2¢° -pR=p+R*R

So, using observation R(0,p) = Y (p) from the transseries,
—p — ¢ 1—2+ ! ! 1 Y
R(&,p) = =€ P(E+1) 2/0 3 p[(&+1)2[P+R*R](§,p)—[P+Y*Y]]d§+W

1Costin and Costin[9] actually used bounds on ay, ; to determine equivalent results. The two-scale method
was worked out in collaboration with X. Liu
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This can be shown to be a contraction mapping in a domain in the (£,p) variable that avoids
& = —1 and is compact in £ and restricted to argp € (—4,d) in the space of functions that
are finite in the [|.||, norm in this sector. Thus, the Laplace transform [LyR(E,.)](z) exists for
6 € (—4,6) chosen so that argz +6 € (—Z,%). So r(¢,z) = O(z™!) for large z in this sector.
Using relative smallness of r, it can be proved that indeed the actual singularities of y(z) are
poles and close (for large z) to the singularities of ¢°(Ce~?), i.e. near x = =z,, as described
above.

12 General Theory for ODEs [10]

The differential system considered has the form

y=f(z'y) yeC', zeC (72)

where
(i) f is analytic in a neighborhood V, x Vy of (0,0), under the genericity conditions that:

(i) the eigenvalues ); of the matrix A = — {gg’;’: (0, 0)} are linearly independent over
i i,j=1,2,..n

Z (in particular A; # 0) and such that arg A; are all different.
By elementary changes of variables, the system (72) can be brought to the normalized form:

L1 B
y'=-Ay+ Ay +g( Ly) (73)

where A = diag{);}, A= diag{a;} are constant matrices, g is analytic at (0,0) and g(z~!,y) =
O(z72)+ O(ly|?) as ¢ — 0o and y — 0.

Performing a further transformation of the type y — y — Ekle apz~* (which takes out M
terms of the formal asymptotic series solutions of the equation), makes

g(lz]™"y) = 0@ M 5|y |z 7%)) (2 = o0 y = 0) (74)

where
M > max Re (aj)
and O(a; b; ¢) means (at most) of the order of the largest among a, b, c.

Our analysis applies to solutions y(x) such that y(z) — 0 as £ — oo along some arbitrary
direction d = {z € C : arg(z) = ¢}. A movable singularity of y(z) is a point 2 € C with
z~! € V, where y(z) is not analytic. The point at infinity is an irregular singular point of rank
1; it is a fixed singular point of the system since, after the substitution z = z~! the r.h.s of the
transformed system, % = —272f(z,y) has, under the given assumptions, a pole at z = 0.

An n-parameter formal solution of (73) (under the assumptions mentioned) as a combination
of powers and exponentials is found in the form

y(z) = Z Cke Mkzgarkg, () (75)
ke(NuU{o})™
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where 8k are (usually factorially divergent) formal power series: §9 = Jo and in general

Su(z) = 3 e (76)

that can be determined by formal substitution of (75) in (73); C € C™ is a vector of parame-
ters?(we use the notations C¥ = []7_, CJI-”, A= (A1, 0 An), @ = (a1, qp), K| = k1 + ...+ k).

Note the structure of (75): an infinite sum of (generically) divergent series multiplying expo-
nentials. They are called formal exponential power series [21].

From the point of view of correspondence of these formal solutions to actual solutions it was
recognized that not all expansions (75) should be considered meaningful; also they are defined
relative to a sector (or a direction).

Given a direction d in the complex z-plane the transseries (on d), introduced by Ecalle [15],
are, in our context, those exponential series (75) which are formally asymptotic on d, i.e. the
terms Cke A kzgaky—r (with k € (NU{0})", r € NU{0}) form a well ordered set with respect
to > on d (see also [10]) (For example, this is the case when the terms of the formal expansion
become (much) smaller when k becomes larger.)

We recall that the antistokes lines of (73) are the 2n directions of the z-plane i\; Ry, —i\; Ry,
1,...,n, i.e. the directions along which some exponential e~*? of the general formal solution
(75) is purely oscillatory.

In the context of differential systems with an irregular singular point, asymptoticity should
be (generically) discussed relative to a direction towards the singular point; in fact, under the
present assumptions (of non-degeneracy) asymptoticity can be defined on sectors.

Let d be a direction in the z-plane which is not an antistokes line. The solutions y(z) of (73)
which satisfy

y(x) =0 (ze€d; |z| = ) (77)

are analytic for large x in a sector containing d, between two neighboring anti-Stokes lines and
have the same asymptotic series

y(@) ~¥o (z €d; |z| — o0) (78)

In the context of (73), a generalized Borel summation LB of transseries (75) is defined in
[10].

The formal solutions (75) are determined by the equation (73) that they satisfy, except for
the parameters C. Then a correspondence between actual and formal solutions of the equation
is an association between solutions and constants C. This is done using a generalized Borel
summation L£B.

The operator LB constructed in [10] can be applied to any transseries solution (75) of (73)
(valid on its open sector Siqqns, assumed non-empty) on any direction d C Sirqns and yields
an actual solution y = LBy of (73), analytic in a domain S,,. Conversely, any solution y(x)
satisfying (78) on a direction d is represented as LBY(z), on d, for some unique y(z):

?In the general case when some assumptions made here do not hold, the general formal solution may addi-
tionally logs iterated exponentials, and powers [15]. The present paper only discusses equations in the setting
explained at the beginning of the present section.
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y(z) = Z Cle ke pMky, () = Z Cre Mk Mk RS (2) = LBY(x) (79)

k>0 k>0
for some constants C € C*, where M; = |Re ;] + 1 (|-] is the integer part), and

o0 ~
~ Yk;
V(@) =) ey (@ =a-M) (80)

=0

(for technical reasons the Borel summation procedure is applied to the series

Fic(z) = 25 5y () (81)

rather than to 8x(z) cf. (75),(76)).

12.1 Results on singularities [9]

The map ¥ — LB(¥) depends on the direction d, and (typically) is discontinuous at the finitely
many Stokes lines, see [10], Theorem 4.

For linear equations only the directions /\_jR+, j =1,...,n are Stokes lines, but for nonlinear
equations there are also other Stokes lines, recognized first by Ecalle. £B is only discontinuous
because of the jump discontinuity of the vector of “constants” C across Stokes directions (Stokes’
phenomenon); between Stokes lines £B does not vary with d.

The function series in (79) is uniformly convergent and the functions yj are analytic on
domains S, (for some § > 0, R = R(y(x),d) > 0.

Theorem 18 (i) There erists 61 > 0 so that if £ = Ciz® e % satisfies restriction |£| < &
then the power series

Fr(8) =Y &Freyim>, m=0,1,2,... (82)
k=0
converge. Furthermore
y(@) ~ Y 27" Fr(é(z) (z €S, z— ) (83)
m=0

uniformly in a domain S5, near anti-Stokes line associated with direction i\ R, where £ is
restricted to a compact set not containing singularities of Fo(€). Further, the asymptotic repre-
sentation (83) is differentiable. The functions F,,, are uniquely defined by (83), the requirement
of analyticity at £ =0, and F{(0) = ey.

Remark 8 A direct calculation shows that the functions F,, are solutions of the system of
equations
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d 1/

geFo=¢" (AR~ (0, 70)) (84)
iF +NF,, =a iF +R form>1 (85)
d€ m m — 1d€ m—1 m—1 =

where N is the matriz

£ (9y8(0,Fo) — A) (86)
and the function R,,_1(§) depends only on the ¥y, with k < m:

—1

) 1 dm ‘
(R, 1 = — [(m DI+ APy~ — e | ) F; (87)

= 2=0

13 Example: Painlevé’s equation A

We write this equation in the form3
u" = -z (88)

We seek a solution which for large z has the leading order asymptotic behavior u(z) ~ z'/2.

Substituting u(z) = z'/2(1 + v(2)), v(z) satisfies

1 v 1 ! n 2
_E_E—F;v + 0" =220 —/20* =0 (89)
A dominant balance argument gives rise to v(z) ~ —%2~%/2 for large z. Continuing in a similar
way, it is not difficult to argue that

v(z) ~ Z z;)jj/2 (90)

=1

Exponential correction to this asymptotic series comes from looking at WKB solutions to the
associated linearized homogeneous equation:

1
v — 2/z2vEg + ;v'H =0 (91)
for which vy ~ 27%/8 exp [+41/22%/%/5]. This formal expansion and the form of the asymptotic

series (91) suggests that an appropriate change of variable that will convert Painlevé equation
close to the normal form in [10] is:

u(2) = 221 +y (25" (92)

3Usually it is presented as u” = 6u? + z. Clearly, a scaling of dependent and independent variable and a
switch of sign of z will result in the form given in (88)
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Substituting this into (88), we get the following differential equation for y(z):

32 1, 16 4y 4 _
n_ 94 =22 =4 = 2
VoYtV T o5y T3z 35”7 (93)
This can be put in the normal form of [10] by defining y = (y,3’'). The matrix A in this case
has eigenvalues ﬂ:%\/ﬁ and we have a1 = ay = —%. From the results in [10], the transseries for
y(z) that vanishes as |z| — oo along any ray in the right half 2-plane is given by

.- 4
y(x) ~ go(z) + Z E* gy (), whereé = Cz~'/? exp [—gﬁx] (94)
k=1
and - -
- agp,; - ag.j .
Yo = 22 %;yk = ZO %Wlthal,o =1 (95)
j= =

Furthermore, the transseries are Borel summable. There are singularities of such y(z), straddling
the anti-Stokes line argxz = +7. Their form is given by looking for expansion in the form

yw) =y B (96)
=0

and doing asymptotics for large . The equation for Fy(€) is given by
2

R
€ Fy +&Fy = Fo+ =, with condition Fy(&) ~ &(1 +o(1)) (97)

Such solution is given by

£

which has a double pole at £ = 12. This corresponds to an infinite array of singularities x
determined by the transcendental relation:

Fo(§) = (98)

) 4
z71% exp [—gﬁxs] =12 (99)

For large zs, the theory [9] predicts location of double poles for such solutions to Painlevé I
solution in terms of the Stokes constant C.

14 Application to PDEs

The methology and rigorous results extend to PDEs as well. We illustrate the methods developed
on the the following modified Harry-Dym problem [20]* that arises in viscous fingering:

1
H,— H*H,.. + 5H3 =0 with H(z,0) = z /2 (100)

4The equation, as it appears in the reference, uses the variable ¢ = z + t, instead of 2.
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A formal asymptotic expansion in powers of ¢, (justified rigorously as well, [12]), results in
1
1/2 —-1/2
H(z,t) ~2~Y E t"P, ( 9/27_>_ / E P, (z9/2’_) (101)

where P, is a completely determined homogeneous polynomial of order n and the asymptotics is
valid for z with argz € (—gm, 37), |2| > t*/°. For z = O(t*/°) we introduce rescaled variables

n= t2/977 =t"% H(z(n,1),0) = *1°G(n,7), (102)

Then, by Corollary 37 in [12]°, for || sufficiently large, with argn € (—a, 37), the series

7) =) TG (103)
k=0
is convergent for small 7. Substituting (101) into (100), the Gy, satisfy
—Go + QTIGO + GGy = 0;GHLrGy = Ry for k> 1 (104)
where the operator Ly, is defined by
2 B 3Gy Tk —1
Lru=u" + @nu' - (G3 + o ) u where 8 = — (105)

and Ry on the right hand side of (104) is completely determined by {G, }]<k. Matching with
(101) requires algebraic decay of G, for large || in the sector argn € (— 559 )-

Using transasymptotic matching as outlined in previous section, after a normalizing change
of variable, it can be proved that for some ¢ € (0, 27) and large 7, excluding an exponentially
small region around the singularities of Gy, the following asymptotic series holds uniformly in

s oar 2
the sector argn € [—— -4, — 6]

Go ~n U +0(n?) (106)

where

Z\/_9/4

(=—-1logC + - ) logn + (107)

with the principal branch of the log and where Cis a spemﬁc Stokes constant, and U(() is
determined from

¢(=logd—2—ir—2V/U—1In (%) (108)

The function U has a singularity at ( = (; = log4 — 2 — im, corresponding to a string of
singularities at n = n,, where

V2 g4
o7 s

5A different scaled variable, ¢ = 73/2, was used in that paper.

+ glognS = —2+log4 — (20 — 1)im + log C (109)
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and where 7 € N has to be large for s to be large. For large 7, argn, ~ —47”, i.e. n, approaches
the anti-Stokes line. A similar quasi-periodic array of singularities exists near argn = %”. It
is known that for large |n;|, the singularities 7, of Go are exponentially close to 7, and of the
same type as those of U. Further, Gg cannot be zero except at 7js. The main result in [13] is the
following;:

Theorem 19 ([13]) For any singularity ns of U with |ns| large, there is an annular domain
around and close to |ns| so that the series (103) is convergent for small enough 7. In particular,
there exists an actual branch-point singularity of G(n, ) within a small neighborhood of ns.

It is to be noted that a singularity ns in the 7 variable corresponds to a moving singularity
in the z variable at the location z = z,(t) = t2/?n,. A crucial and non-trivial part of the proof
relies on control of inversion £} ' for large k, which is explained in detail in [13].
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