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3-D Navier-Stokes (NS) problem

ve+(v-V)v=—-Vp+vAv+f ; V.v=0,

where v = (vy,v2,v3) € R3 is the fluid velocity and p € R
pressure at x = (x1,x2,x3) € Q attime t > 0. Further, the

operator (v - V) = 23:1 v;0z,, v =nondimensional visocity
(inverse Reynolds number)

The problem supplemented by initial and boundary conditions:
v(z,0) = v (x) (IC), v = 0o0ndN for stationary solid boundary

We take © = R3 or Q = T3[0, 2«]; no-slip boundary condition
avoided, but assume in the former case ||v(? || f2(rs) < oco.
Millenium problem: Given smooth v(®) and f, prove or disprove

that there exists smooth 3-D NS solution v for all £ > 0. Note:
global solution known in 2-D.



NS - a fluid flow model; importance of blow-up

ve+(v-V)v=—-Vp+vAv+f ; V.v=0,

Navier-Stokes equation models incompressible fluid flow.

v + (v-V)v = DD‘t’ represents fluid particle acceleration. The
right side (force/mass) can be written: V - T + f, where T': a

tensor of rank 2, called stress with

ov; = Ov ]

T, = — "
gl p Jl_l_ [8331 + 82133'

The second term on the right is viscous stress approximated to
linear order in V. Invalid for large ||Vv|| or for non-Newtonian

fluid (toothpaste, blood)

Incompressibility not valid if v comparable to sound velocity

If NS exhibited blow up, the model itself becomes invalid; terms
not included in NS approximation potentially important.



Definition of Spaces of Functions

H™(R3): completion of Cg° functions under the norm
1/2
8l1+l2+l3¢

|61l rrm = PR e vy
0<li+lals<m FTL T2 O3

Note H® = L, If ¢ is a vector or tensor, components are also
involved in the summation. Note: ||.||gz= usually called norms.

H™(T3[0, 2w]): Completion under the above norm of C° periodic
functions in x = (¢, x2, x3) With 27 period in each direction.

L, ([0,T], H™(R3)) will denote the completion of the space of

smooth functions of (x,t) under the norm:

||v||Lp,th,m = || ||'U(., t) ||Hm ||Lp



Basic Steps In a typical evolutionary PDE analysis

Construct an approximate equation for v(¢) that formally reduces
to the PDE as € — 0 such that ODE theory guarantees solution

2 (©)

Find a priori estimate on v that satisfies PDE and also obeyed by

2 (©)

Use some compactness argument to pass to the limit e — 0 to
obtain local solution of PDE

If a priori bounds on appropriate norms are globally controlled,
then global solution follows. One way to get to classical (strong)
solutions is to have a priori bounds on ||v(.,t)|| g~ for any m large
enough.

For weak solutions, starting point is an equation obtained
through inner product (in L ) with a test function.



Some basic observations about Navier Stokes
For f =0, Q2 = R3?, ifv(x,t) is a solution, so is

or(@,t) = Jv ($:5):

A space-time norm ||.|| is called sub-critical if for A > 1,

|lval| = A7 9||v|| for some g > 0. If the above is for g = 0, critical.
If the above is true for g < 0, the norm termed super-critical

Basic Energy Equality for f = 0:

1

1 t
S0 OIE, +v [ IVo(. ¢4t = S 1oz,

Therefore, for following super-critical norms over time interval [0, T'|:
1olfmrae < 1002 5 Nvllz,.m1 < C

These are the only two known globally controlled quantities



More a priori bounds for f = 0

Taking the gradient of unforced NS-equation 3 times, doing an Lo
inner-product with D?v and summing over all indices j upto m
we obtain:

d 1
aillv(.,t)llfqm + v||V0||3m < eml V(s t) oo v, t)]|m

If m > 2, then Sobolev inequality gives

IVu(.,)||lc_|| < Cnllv(.,t)||g=, meaning that we obtain from
above:

Lo t)ll 1 < Conll0(os ) Zsms 50 [0 )11 < — Ol
ag' 7 NET = Em AT CHIET =t Co 0O ||

Note the right hand side blows up att = T™* = !

Crn |0 ||




Results by Leray

Leray (1933a,b, 1934) made seminal contributions:
A solution exists, though uniqgueness unknown, in
Lo ((0,T),L2(R3)) N Ly ((0,T), H*(R3)) forany T > 0.

For regular f and v(®), unique smooth solution in (0, T*). For
f = 0, Leray’s weak solution becomes smooth again fort > T,

Fort € (0, T*), weak and strong solution the same. Only small
v(®), f or large viscosity gives T* = oo
f(;‘r |IVv(.,1)||cdt < oo guarantees smooth solution on (0, 7.

Leray conjectured formation of singular 1-D line vortices where
V X v blows up at some time t,.
Also conjectured blow up for f = 0 via similarity solution

o) = =07 ()



Some known important results -ll

Cafarelli-Kohn-Nirenberg (1982): 1-D Hausdorff measure of the
singular space-time set for Leray’s weak solution is 0.

Necas-Ruzicka-Sverak (1996): no Leray similarity solution for
v(®) ¢ L3, Tsai (2003): no Leray-type similarity solution with finite
energy and finite dissipation.

Beale-Kato-Majda (1984): fOT IV X v(.,t)||codt < co guarantees
smooth v over [0, T'|

Other controlling norms by Prodi-Serrin-Ladyzhenzkaya and
Escauriaza, Seregin & Sverak (2003): ||.|z,,z..., for $ + 2 = 1 for

s € [3,00).

Constantin-Fefferman (1994): If |3§5| IS uniformly Holder

continuous in x in a region where |V X v| > c for a sufficiently
large c for t € (0, T'], then smooth N-S solution exists over (0, T']



Difficulty with Navier-Stokes in the usual PDE analysis

Nonlinearity strong unless v is large enough for given v(®) and f.
Rules out perturbation about linear problem.

v = 0 approximation (3-D Euler equation) formidable, though
other techniques available. Rules out perturbative treatment.

The norms that are controlled globally are all super-critical: does
not give sufficient control over small scales.

Other techniques include introduction of e regularizations like
hyperviscosity, compressibility, etc. and taking limite — 0

Maddingly-Sinai (2003): if —A is replaced by (—A)® in N-S
eguation, and o« > 2 then global smooth solution exists.
Tao (2007) believes that no "soft" estimate can work including

Introduction of regularization. Believes global control on some
critical or subcritical norm a must.



An alternate approach

Sobolev methods give no information about solution att = T*
when a priori Energy estimates breakdown.

A more constructive approach is to use Borel summation ideas
for specific v(?), f and v. We consider z € T3[0, 27]

Borel summation, under some conditions, generates an
Isomorphism between formal series and actual functions they
represent. (Ecalle, ..., O. Costin).

Formal expansion of N-S solution possible for small ¢:
v(z,t) = v (z) + >0 tmv(™) (x).

Borel Sum of this series, which is sensible for analytic v(®) and f,
leads to an actual solution to N-S (O. Costin & S. Tanveer, ’06) In
the form: v(z,t) = v(O(z) + [, e P/*U(x, p)dp. This form

transcends assumptions on analyticity of v(®) and f or of ¢ small



Borel based approach -l

The Fourier-Transform F [U (., p)] (k) = U (k, p) satisfies an
Integral equation:

p A A
U(k, p) = / K (p,p)R(k, p')dp’ := N [U} (k, p)
0)
R(k,p) = —ik; Py [ﬁo,jw + U590+ U; * ﬂ} + 16(p)

where, P, = (1 - %) ¥ denote Laplace convolution, followed

by Fourier convolution. K(p, p’), v1(k) given by:

K(p,p') = g (2’ J1(2)Y1(2)) — 2'Y1(2)J1(2")) , z = 2|k|+/D;

2 = 2|k|\/p' , V1(k) = —|k|?vo — ik, Py [0 %V0] + f(k)



Generalized Laplace Representation and Results

It is useful to consider a more general representation:
v(@t) = v @) + [ Ula,9)e""dg
0

Gives rise to an integral equation similar to that forn =1
Have proved (with O. Costin, G. Luo):
1. For regular enough v(® and f, there exists unique solution

U (k, q) to the integral equation U = N/ [f]} for functions for

which [;° e=21||U(., q)||;ndq < oo for some a. > 0. Generates
smooth NS-solution in (0, a~1/™) satisfying I.C.

2. If solution U decays for large g, global NS existence follows.
On the other hand, if global smooth NS solution exists, then for

some large enough n, ||U(., q)||;» decreases exponentially in q.



More results using Integral equation approach:

Consider solution based on a finite dimensional Galerkin
projection in Fourier-Space and uniform discretization in g of the
Integral equation:

O = NN (O]

3. We proved ||U — U] - 0as N — oo, and § — 0

4. For given solution in a finite interval [0, qo], computed
numerically or otherwise, a revised asymptotic bound on
exponent « is possible based on solution behavior in [0, gg]. This
can give rise to long existence time (0, a~*/™) for NS.

For given f = 0 and v(®) and v, depending on computed [0, go]
behavior of v, one an choose in principle 4 small enough and
large enough N, go so that resulting aa—'/™ > T, the critical time
beyond which Leray’s weak solution becomes smooth.



|U(.,q)||;x vs. ¢, n = 2, v = 0.1

Zero forcing

knl

. 0 .
Kida I.C. fvg ) — sin x1(cos 3xs cos x3 — cos T cos 3x3)

Other components from cyclic relation:

Ugo)(flfufﬂzai%) — v§°)(m3,m1,mz) — U;S,O) (2, x3,1)



Conclusions

Global existence problem for smooth 3-D Navier-Stokes solution
remains a difficult problem, despite extensive research.

No obvious small or large parameter. Nonlinearity strong except
for very large viscosity.

Known globally controlled norms are all super-critical that do not
give enough control over small scales.

Alternate Borel based methods casts the global existence
problem to an asymptotic problem for a smooth solution to a
nonlinear integral equation that is known to exist a priori.

The solution to the integral equation over [0, go] can be computed
numerically with rigorous error control for specific v(®), v and f
and can be used to obtain better asymptotic bounds at g = oc.
Depending on features of computed solution in [0, go], this can
result in provably large existence time for N-S solution.
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