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Main idea

For an autonomous differential operator A/, consider
vy = N[v], v(z,0) = vo(x)
Formal small time expansion:
(x,t) = vo(x) + tvy () + t2va(x) + ..,

where vy (x) = N[vg](x), va = % {N, (vo)[v1]} (2),..
Generically divergent if order of A is greater than 1
If Borel summable, obtain

v(x,t) = Z v,

solution to the PDE initial value problem for small enough ti me.
Depending on properties in the Borel plane, solution can be
extended over longer time periods [0, T7.



Eg: 1-D Heat Equation (Lutz, Miyake & Schaefke)

Vi = VUgg » V(x,0) = vo(x) , v(x,t) = vo + tvy + ..
Obtain recurrence relation

(2k)

(k+ 1)vg41 = v, , implies v, = o

Unless wvg entire, series >, t*wvy factorially divergent.

Borel transformin = =1/t: V(x,p) = Blv(xz,1/7))](p),
V(z,p) = p~2W(z,2,/p), then Wy — W, =0

Obtain v(x,t) = [, vo(y)(4nt) =12 exp[—(xz — y)?/(4t)]dy,
i.e. Borel sum of formal series leads to usual heat solution.

We seek applications of these simple ideas to more complicat
PDEs. including 3-D Navier-Stokes

ed



Background
Borel Summability for linear PDEs studied before (Balser, M lyake,
Lutz, Schaefke, ..)
Sectorial existence for a class of nonlinear PDEs (Costin & T )
Complex singularity formation for a nonlinear PDE (Costin & T.)

Navier Stokes is a nonlinear PDE governing fluid velocity v(x,t):
vi+v-Vv=—-VP+vAv + £

Vev=0, v(x,0)=vo(x)

Using PDE techniques, Leray (1930s) proved local existence
uniqueness for classical solutions and global existence fo r weak
solutions. Global existence of classical solutions known | n 2-D,
not in 3-D. Literature extensive ( (Constantin, Temam, Foia  s,...).



Background Il

Global existence of classical solution or lack of it has
fundamental implications to fluid turbulence.

Blow up of classical solution with finite energy |vo|| L2 (rs) iIMmplies
|V X v(.,t)|leo @and ||v(.,t)||L3(rs) blow up (Beale etal, Sverak).

This becomes incompatible with the modeling assumptions in
deriving Navier-Stokes. Hence other parameters not includ ed in
Navier-Stokes would become important in turbulent flow.

For the usual PDE techniques, key to global existence questi onis
believed to be a priori energy bounds involving Vv (Tao). None is
available thus far.

This motivates alternate formulation of initial value prob lems for
nonlinear PDEs that are not dependent on energy bounds at all
Borel methods and generalization via  Ecalle sum allows this.



lllustration: Borel Transform for Burger’s equation

Substitute v = vo(x) + u(x, t) INnto vy + Vv, = vy, tO Obtain

Ut — Uggy = —VoUzy — UVO,xz — UlUy + V1(T)

where vq(z) = v) — vovo,r, , and ,u(z,0) =0

Inverse Laplace Transform in 1/t and Fourier-Transform in  :
pUpp + 2U, + k*U = 6, — iktoiU — ikULU = G(k,p) + o1,

% is Fourier convolution, % Fourier-Laplace convolution. Hence

U(ka p) — /Op ’C(pa p,; k)é(k,p,)dp, + U© (kap) =N {0} (kap)

K(p#f3F) = o A=V ()0(2) = V(D)

Jl(Z)

z

z=2|k|v/D, 2 =2|k|\/p', U (k,p) =2 b1 (k)



Solution to integral equation U = ./\/'[(7]

C
We find |[K(p,p’;k)| < — , C aconstant
VP

IECp)*G (., p) 2@ < CIECP) @GPl @)

Define norm ||.||(®) for functions F(p, k)

|F||(® = / e=P(|F (., p) |l 11, dp

easily follows ||F>'>,§G||(°‘) < C||F||(O‘)||G||(°‘)
N seen to be contractive for large o implies Burgers solution for
for Re ; > ainthe form v(z,t) = vo(x) + [, e P/*U(zx,p)dp
Global classical PDE solution implied if — ||U(., p)||L: ey bounded.

Borel summability for analytic  vo requires analyticity of U (., p) for
p € 0 U RT; proof a bit more delicate.



Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Simila r
results expected for finite domain with no-slip BC using
eigenfunctions of Stokes operator as basis. In Fourier-Spa ce

by + v|k|?D = —ik,; Py [0;%0] + f(k)

k(k-)
k|2

P, = (I _ ) . (K, 0) = Bo(k)

where P, is the Hodge projection in Fourier space, f(k) is the
Fourier-Transform of forcing  f(x), assumed divergence free and
t-independent. Subscript 7 denotes the j-th component of a
vector. k € R3 or Z3. Einstein convention for repeated index
followed. * denotes Fourier convolution.



Integral equation for Navier Stokes in Borel plane

Substitute v = v¢ + u(k,t), into Navier-Stokes, inverse-Laplace
Transform in 1/t and inverting as for Burger’'s equation obtain
Integral equation:

p A
U(k, p) = / K (p, p)R(K, p')dp’ + U@ (k, p),
0

Jl(Z)

UO) (k,p) =2 ¥1(k), where

¥1(k) = —|k|?Vo — ik, Py [Do,%V0] + f(k)



Some Results for Navier-Stokes (NS) in  R?
Define ||.||.,5, for p > 3,3 > 0:

lvollu,p = sup e”*1(1 + |k[)* |80 (k)|
kER3

Theorem 1: If || f|| 1,85 ||Do|| u+2,8 < 00, NS has unique solution with

|0(+,t)|| 3 < oo for Re % > @, where o depends on g, f. Furthermore,

0 (-, t) is analytic for Re % > aand [|0(+yt) || pr2,8 < oo fort € [0, 1).
For 3 > 0, v is analytic in 2 with same analyticity width as vg and f.

Theorem 2: For 3 > 0, the NS solution v is Borel summable in 1 /¢, i.e. there exists
U(:I:, p), analytic in a neighborhood of RT, exponentially bounded, and analytic in
z for | Im x| < Bsothatv(x,t) = vo(x) + [, U (x,p)e P/tdp. When
t — 0,v(x,t) ~vo(x) + > o t™vy,(x), where

|vm ()| < mlAogB{*, with Ag, By generally dependent on vg, f.

Same results in  T3. Further, when wq, fo have finite Fourier
modes, By is independent of initial data and  fj.



Results on Navier-Stokes in T3

Define ||.||(®) so that

V)@ = / =PV (., p)[|us 2y dp

Theorem 3: If || Do || 2 (z3) ||f||l1(Z3) < oo then there exists some o > 0 so

that integral equation U = N {ff} has a unique solution for p & RT in the space
of functions {f] || U || < oo} Further,

o(k,t) = vo(k) + [, U (k, p)e—P/tdp satisfies 3-D Navier-Stokes in
Fourier-Space; corresponding v (<, t) is a classical NS solution for t € (0, a™1).
Remark 1: Classical PDE methods known to give similar result S.
However, in the present formulation, global PDE existence | Sa
guestion of asymptotics of known solution to integral equat lon as
p — o0o. Sub-exponential growth implies global existence.



More Remarks on Theorem 3 for 3-D Navier-Stokes

Remark 2: Errors in Numerical solutions rigorously control led.
Discretization in  p and Galerkin approximation in  k results in:

Us(k,md) =6 Y  KmmPnHs(k,m's) + U (k, ms)

m’=0

= N; [ﬁa} for k;=—N,..N, j=1,2,3

Pn is the Galerkin Projection into  N-Fourier modes. N5 has
properties similar to  A/. The continuous solution U satisfies

U= N [ﬁ} + E, where E is the truncation error. Thus, U — Us
can be estimated using same tools as in Theorem 1.
Note: Similar control over discretized solutions to PDES no t

available since truncation errors involve derivatives of P DE
solution which are not known to exist beyond a short-time.



Extending Navier-Stokes interval of existence

Suppose U(., p) is known over [0, po] through Taylor seriesin  p

or otherwise, and computed  |U (., p)||:2 is observed to decrease
towards the end of this interval. Prior discussions show tha t any
error in this computation can be rigorously controlled.

Results in the following page show that a more optimal Borel
exponent a < g Mmay be estimated using the known solution In
[0, po|, where ag is the initial « estimate in Theorem 1. This
implies a longer interval [0, a—1!) for NS solution.

A longer existence time for NS is relevant to the global exist ence
guestion for f = 0, since it is known that there exists T, so that
any weak Leray solution becomes classical for t>1T,



Extending Navier-Stokes interval of existence -l

For ag > 0, define

_ —1/2 . A _
€ = U 1/2p0 / s a = ||Dol;r 5 c :/ ||U(0)(.,p)||lle *Pdp
p

0

Do R
€, = 1/_1/2p51/2 (2/ e **||U(., s)||;ixds + ||f80||ll)
0

e—aopo Po R . R
b= / |ULU + 9¢ - U||jnds
VPpoX Jo

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists on the interval

[0, 1), when @@ > g is chosen to satisfy

a > €1 + 2ec + \/(61—|—2€C)2—|—4b6—€%



Relation of optimal « to NS time singularities

R 1 co+1i100 D/t 1 A 1
U(k,p) = i eP " [o(k,t) — bo(k)] d |~
Tl Jcog—ioo t
Im 1t
| oty
D
Re it
D
a-ty

Rightmost singularity(ies) of NS solution v(k,t) in the 1/t plane

determines optimal «. « gives dominant oscillation frequency.



Generalized Laplace-transform representation

Since the Borel domain growth rate  « relates to complex
right-half % NS singularities, the following representation for
n > 1 is sought:

Bk, t) = o (k) + / e~/ T (k, q)dg
0)

Note U(.,p) — U(., q) is an Ecalle’ acceleration.

In order that U (., q) has no growth for large g, unless there is a
NS singularity for ¢ € R, need to know a priori that there is a
singularity free sector in the right-half t-plane. This is proved to
be true for f = 0 and we have the following result:

Theorem 5: For f = 0, if NS has a global classical solution, then for all sufficiently

large n, U (x, q) = O(e_cnql/(n+1)) as ¢ — oo, forsome C,, > 0.



Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

VO(X) — ('Ul(xla L2y L3 O)a 'U2(3317 L2y L3, 0)7 '03(3317 L2y L3, 0))

v1(x1,x2,x3,0) = v2(T3, 1, x2,0) = v3(T2, T3, %1, 0)

v1(x1, X2, 3,0) = sin x3 (cos 3x3 cos £3 — cos x3 cos 3x3)

1
fi(x1,x2,x3) = 3’01 (1, T2, T3,0)
High Degree of Symmetry makes computationally less expensi ve
Corresponding Euler problem believed to blow up in finite tim e,

S0 good candidate to study viscous effects

In the plots, "constant forcing™ corresponds to f = (f1, f2, f3) as
above, while zero forcing refersto  f = 0. Recall sub-exponential
growth in p corresponds to global N-S solution.



Numerical solution to integral equation-plot-1

Constant forcing

kn

|U (., p)||;2 vs. pfor v = 1, constant forcing.



Numerical solution to integral equation-plot-2
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Zero forcing

U (., p)||;x vs. p for v = 1, no forcing



Numerical solution to integral equation-plot-3

Constant forcing
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|U (., p)||;x vs. p for v = 0.16, constant forcing



Numerical solution to integral equation-plot-4

Constant forcing
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1T (., p)||;x vs. p for v = 0.1, constant forcing



Numerical solution to integral equation-plot-5

X 10_3 k:(l,1,17)
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U(k,p) vs. pfor k= (1,1,17), v = 0.1, no forcing.



Numerical solution to integral equation-plot-6

Constant forcing

log ||U(.,p)l||;2 vs. log p for v = 0.001, constant forcing



|U(.,q)||;x vs. ¢, n =2, v =0.1

Zero forcing

knl

. 0 .
Kida I.C. fvg ) — sin x1(cos 3x3 cos x3 — cos x3 cos 3x3)

Other components from cyclic relation:

Ugo)(fliufﬂzai%) — v§°)(m3,m1,mz) — U;S,O)(mz, T3, T1)



Extending Navier-Stokes interval of existence

For ag > 0, define

€1 = V_l/ZQO_1+1/(2n) y C= / ”0(0)(°9 q)||;re”**dq
q

0)
ey = p=1/2g71H1/(21) (2/
0

e ¢od9o do A e o ) R
b= == 1/(2n) / |UxU + 0o - Ul|pnds
do « J0

do

ey v + 1ol

Theorem 6: A smooth solution to 3-D Navier-Stokes equation exists in the ||.||;z

space on the interval [0, ™~ /™), when o > g is chosen to satisfy

a > €1 + 2ec + \/(el—|—2ec)2—|—4be—e%

Remark: If gg is chosen large enough, €, €7 is small when computed solution in

[0, go| decays with g. Then ¢ can be chosen rather small.



Other problems where approach is applicable

- Navier-Stokes with temperature field (Boussinesq
approximation)

- Fourth order Parabolic equations of the type:

u; + A%u = N[u, Du, D?*u, D3u]

- Magneto-hydrodynamic equation with certain approximatio ns.

- For some PDE problems with finite-time blow-up, blow-up time
related to exponent « of exponential growth of Integral equation

as n — OQ.



Conclusions

We have shown how Borel summation methods provides an
alternate existence theory for PDE Initial value problems | ke N-S.
With this integral equation (IE) approach, the PDE global

existence is implied if known solution to IE has subexponent 1al
growth at oo.

The solution to integral equation in a finite interval can be

computed numerically with rigorously controlled errors.

Integral equation in a suitable accelerated variable qg Will decay
exponentially for unforced N-S equation, unless thereisar eal
time singularity of PDE solution.

The computation over a finite [0, go] interval gives a refined
bound on exponent « at oo, and hence a longer existence time

[0, a=1/™) to 3-D Navier-Stokes.

Approach is applicable to a wide class of other PDE initial va lue
problems.
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