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Background

Stability of oscillating pipe or channel flows important in
transition to turbulence

Numerical methods become difficult and unreliable for large
Reynolds number, most analytic calculations limited to sma |
amplitude oscillations

Earlier investigations (Hall, '78), Hall ('03),
(Blennerhasset-Bassom, '08) present a confusing picture;
guantitative agreement with experiment (Eckmann-Grotber g,
1991) not good.

More generally, analysis methods available for stability o f time
oscillating states are quite limited- hence the motivation for this
line of research.



2-D Linearized disturbance equation for parallel flow

zUyy

20,[0% — a2l — [02 — a?]*p = —g[aj — ®l¢p + —2y,

where 0 < y < 3, U(y,t) is the known time-periodic base flow,  :
perturbed stream function, e: reciprocal Reynolds number.
Disturbance wavelength « fixed.

Initial condition: 1 (y,0) = 1o (y) and no slip wall BC implies:

¢(Oat) — ¢y(09t) =0= ¢(/69t) — ¢y(/89t)

U (y,t) depends on flow situation. For 3 = oo for walls oscillating
along z-direction, U(y,t) = e~ Y cos(t — y). Other expressions for
time-oscillating pressure or for finite 3. In pipe flows, equations
more complicated, though similar mathematical structure



Relation of IVP with Floquet problem

In a general context, if
us = [A+ 2cost Blu ,u(x,0) = uog,

where A and B are time-independent spatial operators.
If A—1 incorporates boundary or decay conditions at oo, We can
can write

A tu, = [I 4+ 2cost A_lB] u

When a priori exponential bounds in ¢t exist, Laplace transform
U(.,p) = [, e Ptu(.,t)dt justified and satisfies

(Z — K)U(.,p) = uo, (1)

where K = pA~! — A~'BS, — A~'BS_, where shift operators
defined by [S_U]|(.,p) =U(.,p — 1), [S+U|(,p) =U(.,p + 1)



Relation to Floquet problem- page Il

If we define p =0 +in,U(.,0 +1in) = U,,

[A — ’LTL] Un — O'Un — BUn_l — BUn+1 = Uo (2)

When R,, = [A — in]~ ! exists,

U, =ocR,U, + RnBUn—l + RnBUn—I—l + Rnug

We may define operator K acting on U = {U,},, ., such that
[KU], = o R U, + RnBU,_1 + RpyBU, 11

Then, [Z — K]U = U"

Fredholm applies when IC is a compact operator on a Hilbert
space, implying solvability iff only solution to Floquet pr oblem
(Z — IO U=0is U =0.



Stabllity criteria

If Floguet problem has only zero solution for Re o > 0 in a Hilbert
space where wu,, decays sufficiently rapidly in  n, then u(x,t)
decays since

u(@,t) = [ e"Ule,p)dp

— 100

Since U(.,p) = (I — K)™ " uo = Rouo, the singularities of
resolvent R, in o determine the long-term behavior of  w(x,t)
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Floguet spectrum for osclillating plates

For the oscillating plate, the floquet problem becomes

A%

2€

A%
(82 — a® — 20 — 2in) @, = Zz— (14 T) @it (14+7T) s,
€

where V(y) = a {e—<1+i>y 4 e—(1+i)(ﬁ—y)} o =T

Theorem: For 0 < 3 < o0, the Floquet problem has only discrete spectrum. For
2 .
B = oo, discrete spectrum also, except for o € {— 0‘7 + 17 + R_}
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Floguet problem for oscillating plate for B = oo

For 8 = oo, V(y) = 3e~¥(+9) with Floquet problem:

A% oV
(82 — a® — 20 — 2in) @, = VW,  + 2V 18,
€ €

tV*(y 2V'*
Wy . _

+ Z[®n+ta]

€

Let v,, = Va2 + 20 + 2in. Hall ('74) assumed

b, = Z Aj,k,ne—('vn—l-kﬂa)y _|_Z Bj,ke—(a+k—|—z.7)y’
J.k,m i,k

constrained by Re~,, + k£ > 0, o + k > 0. The recurrence
relations for A; ., Bj r were solved numerically. Concluded
Reo < 0for € > 1/200. Note: more and more terms are needed

for accuracy as € — OT.



Floguet problem for oscillating plate

Blennerhasset and Bassom ('08) concluded instability for €~ %
based on numerics on the same recurrence relation. They

suggest an inviscid instability mode

Based on U varying on relatively slow time scale, a quasi-steady
calculation (Hall, '03) based on inviscid Rayleigh equatio n:

(U = ¢) |82 — a*| ¢ — Uyytp = 0 , with ¢ = 2ieo

suggested stability.

Experiment (Merkli-Thomann, '75, Clemen-Minton, '77,
Eckmann-Grotberg '91) suggests instability, though quant itative
disagreement with theory about onset.

Effect of transients on possible nonlinear stability, like for
non-oscillatory pipe and channel flow, is not known.



Further Laplace transform for (3 = oo

Laplace Transform in vy, which can be rigorously justified, gives
(s = A2) @ (s) = (s = A2)®{(s)

() 21

T3¢ (” (s +1—1)?— a2

) (i)n_|_1(8 -+ 1 — ’L)

o (1 s +1 4—22)2 - a2]) Froals 1),

where
! (0) + 5%,,(0)

b0 (s) = 2O F 7

9

A2 a? + 20 + 2in

n —

Contraction argument gives for large  Re s, unique solution
P(s) ~ B (s)



More on Floquet Problem for G = oo

Convenient to introduce discretized variables
Sk,j = S—|—k¢—’l,] ) An,k,j = )\n—|—k—’l,] ) @n,k,j(s) p— (I)n(S—I—k—Z])

Then, with

1 21
1 —
Buki() = 57— 11+ 1 T
ki n+j [3k+1,j+1 -« }

1 21
1
7(1,k:,')7 (S) — . Az 1— n 0 ’

B, 5.5(5) = @) i (8) + BEL (8) Pt 1 otr,j41(5)

1
+B. D (8) Bt kt1,i—1(5)




Associated Homogeneous Equation and Solution

n 1 n —1 n . n
Gy} = Bt sCitr o1 + BriiiGh i i » with Gglg =1

Introduce T = {a1, as,..,ar} € {—1,1}" with
Jk =a1 +a2 + ..+ ax. Thenfor |7]| <k,

k
Gy = > T8 i1, (s)

T,Je=7 =1




1

e =3 I

T Je=7 l=1 (S+l - ]-_I_Z]l 1)2 n_|_3l 1)

210 ]
(S-+—l-+-z]l)2-—-c12)

where

. . k
Ji—1=a1+az+.a—-1, Jo=0 , {ala az, ak} S {_]—9 ]-}

An,::\/o?-+-20'+—2in



Solution in terms of {<I>n(0), ‘I’Q(O)}nez

It can be proved that

b =3 (£) 3 G

k=0 j=—k,2

Requiring solution to be pole freeat s = \,,, s = a gives

Z CnntiPrn(0) + Z brn,nti P (0) =0, forn € Z
JEZ JEZ

Z Cn,n+;Pn(0) + Z dyn+; P (0) =0, forn € Z,

JEZL JEZ
? ag,; Gy i (a)
where a4 = Z 2e oz )\2 ,
k=|j| k,j n—+j

Similarly expressions for b, n4;, ¢’s, d’'s. Note ‘G,&Z?




Asymptotics for G,(:? for |7] << k

for In] <<k, k>>10<< ¢
We note that

(ar) 1 2ilj—1 + J2 4+ 24511
Bn‘l‘jl—lal_lajl—l(s) — 2 1— 2
(s+1—1)% — (s+1—-1)% —
Forl >> 1,if 3,1 << I, then we have
,B(al) (S) o 1 2zlgl 1 —I—O('ﬁ
n+ji—1,l—1,51—1 T (s +1— 1)2 [(s 4+ 1 — 1)2 Ai]z 12
A(n)I'(s — \,)T A k! ]
G (s) ~ (n)L(s )T(s + An) | | [1 Aty ]
LC(s+k—X)T(s+k+A,) (L;a).(k%)v k



Computational details in G,g'f?(s)

To get results for G,(:j) as quoted, we need

k
Sk,jsm = Sj Sj g)g”,-

=1 T?jk::j

k
Note that Sk j.m = Z F()05 |s=0 Tik,;(B),
=1

T ri(B) = » eI

T,Jk=]

k
C(238) = Z Tl,k,jzj = Zea’l(ﬁ"‘logz)..eal—1(5+10g2)eaz logz ,ailogz
j=—k T

1 -1 1 k—1l+4+1
= (oo ) (o4
< <



Floguet Spectrum In the closed right-half plane

Use of Gamma function asymptotics and Euler-McLaurin

summation converts the system of equation into a set of integ ral
equations for which there is no nonzero solution for Reo > 0 for
lo| < < for some small c.

Theorem: For 3 = o0, the Floquet problem for oscillating plate has no spectrum in

the region Re o > 0 for |or| < < for some small c.

For o = O () a different asymptotic analysis is needed.

Further, for finite 3, we use a Neumann series based on Volterra
kind of integral equation, instead of explicit Laplace tran sform in
y, though analysis is more complicated.

Other non-perturbative Floquet problems require somewhat

different techniques, as exemplified in the following for th e 3-D
Schroedinger equation with time-periodic potential.



Floguet problem In ionization of hydrogen atom

Reference: O. Costin, J. Lebowitz, S.T, Comm. Math. Phys, 20 10

b
(—A o+ nw> &, = —iQ(|z|) [Brni1 — Pr_1]
r

d? b I(l+1
reduces to [— + — — (+1) -+
dr2 r r2

10— nw| w, = —1Q[Wwp41—Wn_1]

Q(r) assumed smooth and nonzero in support  »r < 1. Also, can
prove 20 € R

Can prove w,, = 0 for » > 1 for n < 0 as otherwise

®, = 2y, .(0,¢) ¢ L3(R?), implying w, (1), w’,(1) = 0 for
n < 0.



Floguet problem asymptotics for Hydrogen atom

Define ng as the smallest positive integer for which either

Wn, (1)

or wy,, (1) nonzero for assumed nonzero solution. Take the case

o

wy, (1) # 0, taken 1 w.l.o.g. Find %wno_k(l) = %8, 21, Where

ik:£2k:

£ = frl Vv Q(s)ds. For € small, w,,—r ~ @it
Above suggests thatfor r» = O(1), for k& >> 1,

ik€2k

a0

w’n,()—k: ~

Requiring O(k?), O(k) terms to vanish in the residual

 Lpwp,—k — 12 [Who—k+1 — Wno—k+1]

R =
gno—k(r)

gives f(r) = Q~4(r)Q'/*(0) exp [411 1r ds:;%

9




Hydrogen Floguet Problem asymptotics

The asymptotics wg,,—k ~ z(zf)’:f(r) invalid when kr = O(1). We

demand substitution of

ikg2k H (kar)

= @’ " H ke

w’no—k}

result in residuals of O(1) uniformly in » € (0, 1]. Obtain to the
leading order in k,

2
H(¢) ~ \/;64C1/2K1+1/2 (¢) where Kj;4/2 is a Bessel function.

Any assumed nonzero solution is singular at r = 0. Therefore, Flo-
guet problem has no acceptable solution for Reo > 0, implying

hydrogen atom ionizes for assumed time-periodic compact po ten-

tial of arbitrarv <ize (Proofs anpear in the naner cited)



Conclusions

The Floquet spectral problem arises naturally in the linear 1zed
time-evolution equation for disturbance on a time-periodi C
solution. May be rigorously and constructively analyzed in a
number of situations, including oscillating channel and pi pe

flows, 3-D Schroedinger equations, etc.

For Stokes layer problem 3 = oo problem, an intriguing
connection revealed with calculation of expected value in s ome
stochastic process. A continuum limit is identified as e — 0 that
reduces an infinite discrete system of linear equation into a
system of integral equations for which the only solution is 0 for
Reo > 0when o << 2. Analysis for o = O(2) is in progress
In some problems like the 3-D Schroedinger equation with a
time-periodic compact potential added to Coulomb potentia l, the
infinite set of differential-difference equations may be an alyzed
through rigorous WKB analysis.



An integral reformulation of 2-D channel IVP

If we introduce ¢ = (92 — a?)1, then equation may be written as:

“Ig],

U U
200 — (0 —o®) & = — 0+ !

where operator Z : L?(0,3) — H?(0, 3) is defined by

sinh(ay) [Y

o sinh(ag) [, Srble® —y)le(y)dy

Ziol(y) =

sinh(a(8 —y)) [*

osinhlof] /s sinh(ay’)p(y")dy’,

which incorporates Z[¢](0) = 0 = Z[¢](3). For B = oo,

e Y

Z9)(w) = < [ sinb(ay)o)ay - [T e o )ay,



Integral reformulation-I|

An operator ‘R similar to similarto Z can be defined as an
inversion of (83 — a2> such that for x € L?(0,3), %I [R[x]] is

zeroat y = 0and y = 3. When 3 = oo, replace by decay.
Evolution for ¢ may be written as:

6~ ORIS) = L RIUG| — R Uy ZI6]

Integration in time over (0, t) results in an integral reformulation
for rigorous justification of Laplace transform in t, and
determining how Floquet spectrum relates to initial value
problem.

Space integration of ) equation gives O(%) growth rate, since

U,|oco
uloo (116,112 + a2}

2ex

d
2l 12 + Q21912 + by |12 <
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