A new approach to Regularity and Singularity

Questions in some PDEs including

3-D Navier-Stokes

Saleh Tanveer
(Ohio State University)

Collaborators: Ovidiu Costin, Guo Luo

Research supported in part by
e IMS (Imperial College), EPSRC & NSF.



Regularity and Singularity in PDEs-background

- PDEs modeling physical phenomena typically include some
effects while ignoring others.

- Existence and uniqueness questions of smooth solutions
fundamental to relevance of a PDE model, as is blow-up.

- Global existence of evolutionary PDE solutions typically r ely on
"Energy" methods. Control over sufficiently higher order So bolev
norm often necessary.

- Numerical discretization not rigorously controllable, ge nerally.
Further, numerical resolution becomes an issue in higher
dimensions.



Navier-Stokes existence—background

- Global Existence of smooth 3-D Navier-Stokes solution is an
important open problem.

- Deviation from linear stress-strain relation or incompres sibility
IS potentially important if N-S solutions are singular

- Globally smooth solutions known only when Reynolds number
small

- Generally, smooth solutions for smooth data on [0, T'] known to
exist, for T scaling inversely with initial data/forcing.

- Global weak solutions known since Leray, but not known
whether they are unique. For unforced problem in T3, such a
solution becomes smooth again for t > T,, T, depends on IC



Borel Summation—background and main idea

- Borel summation generates an isomorphism between formal
series and actual functions with respect to all usual algebr aic
operations (Ecalle, Costin,..). Borel summation used in
exponential asymptotics (Dingle, Berry,..).

- Borel sum can involve large or small variable(s)/ parameter (S).

- Formal expansion for ¢t << 1: v(x,t) = vo(x) + > . _, t™vm ()
obtained algorithmically by plugging into vy = N[v], where N/
being some differential operator. Series usually divergen t

- Borel Sum of this series gives actual solution, which transc ends
restriction t << 1

- For NS or Burger’s equation, Borel sum given by:

o(e,t) = vo(e) + [ U, p)e?/tdp



Borel Summation lllustrated in a Simple Linear ODE

_1
y—y—;

Want solution y — 0,as x — +oo

Dominant Balance (or formally plugging a series in 1/x):
1 2 (—1)*k! o
yN_;—I_E et + .. = y(x)




Borel Summation for linear ODE -II

Y (p) = Blgl(p) = Y (—1)*p* = —ﬁ

v = [ e Y (p)dp = LB

IS the linear ODE solution we seek. Borel Sum defined as LB.
Note once solution is found, it is not restricted to large x.

Necessary properties for Borel Sum to exist:

1. The Borel Transform Blyo](p) analytic for p > 0,

2. e~ *P|B[yo](p)| bounded so that Laplace Transform exists

Remark: Difficult to check directly for non-trivial problem S



Borel sum of nonlinear ODE solution

Instead, directly apply £~ to equation; for instance

/ 1 2 o .
Yy —y=—-+1y°; with lim y =20

T2 Tr— 00

Inverse Laplace transforming, with Y (p) = [£™Yy](p):

. . 1 Y xY
—pY(p) —Y(p) =p+Y xY implying Y (p) = — _
1+p 1+p

For functions Y analytic for p > 0 and e~ *PY (p) integrable, it
can be shown above has unique solution for sufficiently large Q.
Implies ODE solution y(z) = [~ Y (p)e P*dpfor Rex > «
The above is a special case of nonlinear ODEs (Costin, 1998).
Generalized to sectorial PDE solutions (Costin & T., '07)



Borel sum of nonlinear ODE solution-lI

Define x;(p) characteristic function, equalling 1 for

p € [7, (7 + 1)) and zero otherwise.

Define Y;(p) = Y (p)x;(p). Then from property of Laplace
convolution xfor p € [, +1): Y Y =57_ V% Y;_,
Therefore, integral equation for p € [5,7 + 1) becomes:

i—1
7T 140p 1+p 1+p~= ’

Nonlinear ODE problem transformed to a sequence of linear
problems beyond [0, 1) interval. If a convergent series or other
representation is available in [0, 1), the rest involves a sequence
of linear problem. This feature generalizes to nonlinear PD Es as

well.



Integral Equation corresponding to Burger’s equation
Plug in v = vgo(x) + u(x, t) into 1-D Burger’s to obtain
Ut — Upy = —VoUy — UV z — UUy + V1() , v1(T) = vy — VoVo,x

with uw(x,0) =0
Inverse Laplace Transform in 1/t and Fourier-Transform in x:

A

pUpp + 2U, + k*U = —ikdo*U — ikUEU = G(k,p)

Inverting left side using U (k, 0) = 0 gives:

U(k,p) = /0 " K(p.p's )Gk, p)dp + U (kyp) = N U] (k,p)

K, p's k) = " {Yi() I (2) — 2Va(2) T2 ()

J1(z)

z =2lk|\/p, 2’ =2|k|\/p', UQ(k,p) =2 b1 (k)



Solution to integral equation U = ./\/'[(7]

C
IK(p,p'5 k)| < 7 , C a constant
p

1B (. p)RG (D) lpaesy < CIEC, p) @) |G, p) o es)

Define for functions of  F'(p, k) the norm:

| F|| () :/0 e “P||F(.,p)||r1(rs) dp ,then can show

IFXGI@ < CIF |G|

Using above, can show A contractive for large «; implies integral
equation has unigue solution and so Burger PDE has continuou S

solution for Re% > aas v(z,t) = vo(x) + [ e P/tU (x,p)dp

Global PDE solution if ||U(., p)||1(rs) does not grow as p — oo



Incompressible 3-D Navier-Stokes in Fourier-Space

Consider 3-D N-S in infinite geometry or periodic box. Simila r
results expected for finite domain with no-slip BC using
eigenfunctions of Stokes operator as basis. In Fourier-Spa ce

by + v|k|?D = —ik,; Py [0;%0] + f(k)

k(k-)
k|2

P, = (I _ ) . (K, 0) = Bo(k)

where P, is the Hodge projection in Fourier space, f(k) is the
Fourier-Transform of forcing  f(x), assumed divergence free and
t-independent. Subscript 7 denotes the j-th component of a
vector. k € R3 or Z3. Einstein convention for repeated index
followed. * denotes Fourier convolution.

Decompose © = 99 + u(k,t), inverse-Laplace Transformin 1/t
and invert the differential operator on the left side



Integral equation associated with Navier-Stokes
We obtain:

PN p A A A
U(kap) — L K:j(pa p,;k)Hj(ka p,)dp,—I—U(O)(k,p) =N [U} (ka p)

(1)

1k

I Y ()0 (2) — 2'Ya(2)J1(2)}

z

Ki(p,p'sk) =

U (k,p) = 2

J1 z) .
( )’Ul(k) 0 Pk = (I—
<
01(k) = (—v|k[*80 — ik; Py [80,%00]) + f(K),
%, denotes Fourier Convolution, * denotes Laplace convolution,

while % denotes Fourier followed by Laplace convolution. J; and
Y; are the usual Bessel functions.



Results for Integral equation and Navier-Stokes-1

Theorem: If || Do |71 (23, ||f||l1(z3) < 0o then there exists some « so that integral

equation ﬁ =N {f]} has a unique solution for p & Rt in the space of functions

{ff 0@ < oo}. Further, © (k, t) = do(k) + [>° U (k, p)e~P/tdp

solves 3-D Navier-Stokes in Fourier-Space; the corresponding fv(a:, t) IS a classical

Navier-Stokes solution for t € (0, a™1).

Remark 1: Local existence results in Theorem 1 already known
through classical methods. In the present formulation, glo bal
PDE existence is a question of asymptotics of known solution to
integral equation in the sense that a sub-exponential growt hof U
as p — oo implies global existence of PDE solution.



More Remarks on Theorem 1 for 3-D Navier-Stokes

Remark 2: Errors in Numerical solutions rigorously control led.
Discretization in  p and Galerkin approximation in  k results in:

Us(k,md) =6 Y  KmmPnHs(k,m's) + U (k, ms)

m’=0

= N; [ﬁa} for k;=—N,..N, j=1,2,3

Pn is the Galerkin Projection into  N-Fourier modes. N5 has
properties similar to  A/. The continuous solution U satisfies

U= N [ﬁ} + E, where E is the truncation error. Thus, U — Us

can be estimated using same tools as in Theorem 1.

Note: Similar control over discretized solutions to PDEs no t
available since truncation errors involve derivatives of P DE
solution which are not known to exist bevond a short-time.



Numerical Solutions to integral equation

We choose the Kida initial conditions and forcing

VO(X) — ('Ul(wla L2y I3 0)7 '02(3317 L2y L3, 0)7 '03(3317 L2y L3, O))

v1(x1, 22, x3,0) = v2(T3, X1, x2,0) = v3(T2, T3, X1, 0)

v1(x1, 2, 3,0) = sin x3 (cos 3x3 cos x3 — cos x3 cos 3x3)

1
fi(x1,x2,x3) = 3’01 (1, T2, T3,0)
High Degree of Symmetry makes computationally less expensi ve
Corresponding Euler problem believed to blow up in finite tim e,

S0 good candidate to study viscous effects

In the plots, "constant forcing™ corresponds to f = (f1, f2, f3) as
above, while zero forcing refersto  f = 0. Recall sub-exponential
growth in p corresponds to global N-S solution.



Numerical solution to integral equation-plot-1

Constant forcing

kn

|U (., p)||;2 vs. pfor v = 1, constant forcing.



Numerical solution to integral equation-plot-2
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Zero forcing

U (., p)||;x vs. p for v = 1, no forcing



Numerical solution to integral equation-plot-3

Constant forcing
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|U (., p)||;x vs. p for v = 0.16, constant forcing



Numerical solution to integral equation-plot-4

Constant forcing
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1T (., p)||;x vs. p for v = 0.1, constant forcing



Numerical solution to integral equation-plot-5

X 10_3 k:(l,1,17)
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U(k,p) vs. pfor k= (1,1,17), v = 0.1, no forcing.



Numerical solution to integral equation-plot-6

Constant forcing

log ||U(.,p)l||;2 vs. log p for v = 0.001, constant forcing



Issues raised by numerical computations

Numerical solutions to integral equation available on finit e
interval [0, po], yet N-S solution requires [0, oo) interval since

b(k,t) = o + fooo e_p/tf](ka p)dp

Actually, the integral over (f ° gives an approximate N-S solution,
with errors that can be bounded for a time interval [0, T], if
computed solution to integral equation eventually decreas es with
p on a sufficiently large interval [0, po].

Further, a non-increasing U over a sufficiently large interval

[0, po| gives smaller bounds on growth rate a as p — oc.
Therefore, in such cases smooth NS solution exists over a lon g
interval |0, a™1).

Recall for unforced problem in T3, even weak solution to NS
becomes smooth for t > T., with T, estimated from initial data.
Hence alobal existence follows under some conditions.



Extending Navier-Stokes interval of existence

For ag > 0, define

_ —1/2 . A _
€ = v 1/2p0 / s a = ||Dol;r 5 c :/ ||U(0)(.,p)||lle *Pdp
p

0

_,,—1/2 _—1/2 2 bo —os l—')— d ~
€1 =v" /7Py e ?|U(.; 8)|lirds + [[Do]|1n
0

e @oPo Po R . R
b= —/ |UEU 4 09 - U||;2ds
0

VDX

Theorem 3: A smooth solution to 3-D Navier-Stokes equation exists on the interval

[0, o™ 1), when ¢ > g is chosen to satisfy

a > €1 + 2ec + \/(61—|—2€C)2—|—4b€—€%

Remark: If pg is chosen large enough, €, €1 is small when computed solution in

[0, po| decays with g. Then a« can be chosen rather small.



Relation of Optimal « to Navier-Stokes singularities

R 1 co+1i100 D/t 1 A 1
U(k,p) = i eP " [o(k,t) — bo(k)] d |~
Tl Jcog—ioo t
Im 1t
| oty
D
Re it
D
a-ty

Rightmost singularity(ies) of NS solution v(k,t) in the 1/t plane

determines optimal «. « gives dominant oscillation frequency.



Laplace-transform and accelerated representation

To get rid of the effect of complex singularity, it is prudent to seek
a more general Laplace-transform involves

Bk, t) = o (k) + / e~/ T (k, q)dg
0)

We have proved that for the unforced problem, if there are
complex singularities  t; in the right-half plane, but not on the real
axis, then a a nonzero lower bound for | argt| exists. Then, for
sufficiently large n, no singularities inthe 7+ = t="™ plane in the
right-half plane. Hence, f](k, q) will not grow with g

U (k, q) satisfies an integral equation similar to the one satisfied

by U (k, p) and Theorems similar to Theorem 1 follow. In the
context of ODEs, change of variable p — q is called acceleration
(Ecalle)



|U(.,q)||;x vs. ¢, n =2, v =0.1

Zero forcing

knl

. 0 .
Kida I.C. fvg ) — sin x1(cos 3x3 cos x3 — cos x3 cos 3x3)

Other components from cyclic relation:

Ugo)(fliufﬂzai%) — v§°)(m3,m1,mz) — U;S,O)(mz, T3, T1)



Extending Navier-Stokes interval of existence

For ag > 0, define

€1 = V_l/ZQO_1+1/(2n) y C= / ”0(0)(°9 q)||;re”**dq
q

0)
ey = p=1/2g71H1/(21) (2/
0

e ¢od9o do A e o ) R
b= == 1/(2n) / |UxU + 0o - Ul|pnds
do « J0

do

ey v + 1ol

Theorem 4: A smooth solution to 3-D Navier-Stokes equation exists in the ||.||;z

space on the interval [0, ™~ /™), when o > g is chosen to satisfy

a > €1 + 2ec + \/(el—|—2ec)2—|—4be—e%

Remark: If gg is chosen large enough, €, €7 is small when computed solution in

[0, go| decays with g. Then ¢ can be chosen rather small.



Example problems where approach is applicable

- Navier-Stokes with temperature field (Boussinesq
approximation)

- Fourth order Parabolic equations of the type:

u; + A%u = N[u, Du, D?*u, D3u]

- KDV and related equations.
- Magneto-hydrodynamic equation with certain approximatio ns.

- For some PDE problems with finite-time blow-up, blow-up time
related to exponent o« of exponential growth of IE solution,
provided there is no-oscillation even with p — q acceleration,



Conclusions

We have shown how Borel summation methods provides an
alternate existence theory for PDE Initial value problems | ke N-S.
With this integral equation (IE) approach, the PDE global

existence is implied if known solution to IE has subexponent 1al
growth at oo.

The solution to integral equation in a finite interval can be
computed numerically with rigorously controlled errors.

Integral equation in a suitable accelerated variable qg Will decay
exponentially for unforced N-S equation, unless thereisar eal
time singularity of PDE solution.

The computation over a finite [0, go] interval gives a refined
bound on exponent « at oo, and hence a longer existence time
[0, a=1/™) to 3-D Navier-Stokes.

Approach should be useful in both regularity and singularit y
studies of more general PDE initial value problems.
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