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Basic Idea

Nonlinear problems, written as N [u] = 0, are difficult to analyze

unless nonlinearity is "weak" or has special structure

However, if we find some u0 with N [u0] = R small and

Initial/Boundary Conditions approximately satisfied, then

E = u− u0 satisfies

LE = −R− N1[E] ,

where L = Nu and N1[E] = N [u0 + E] − N [u0] − LE

If L has suitable inversion for given small intial/boundary

conditions and nonlinearity N1 is regular, then a contraction

mapping argument can often be employed in a suitable space to

analyze the weakly nonlinear problem:

E = −L−1R− L−1N1[E]



Remarks

This kind of inversion regularly employed in other contexts–for

instance in determining error bounds for |u− u0| in perturbation

problems of the type: N [u; ǫ] = 0 when N [u0; 0] = 0

What does not seem to be recognized until recently is how to

determine quasi-solution u0 in a general, efficient and systematic

manner.

Recently, there has been some work (Costin, Huang, Schlag,

2012), (Costin, Huang, T., 2012), (Costin, T., 2013), (T. 2013) in a

number of different nonlinear ODE and integro-differential

equation contexts. I will describe how computation typically

based on orthogonal polynomials and exponential asymptotics

(when domain extends to ∞) may be used to construct u0 and

bounds on E obtained.



Some Applications of quasi-solution approach

1. Dubrovin conjecture for P-1, y′′ = 6y2 + z: For the unique solution of

P-1 satisying y(z) = i
√

z
6
(1 + o(1)) as e−iπ/5z → +∞, the sector

arg z ∈ (−3
5
π, π

)

is singularity free. Problem arises in characterizing

small dispersion effects on gradient blow-up for focussing NLS

(Dubrovin, Grava, Klein, 2008)

2. Find solution f to Blasius similarity equation in (0,∞):

f ′′′ + ff ′′ = 0 , f(0) = 0 = f ′(0), lim
x→∞

f ′(x) = 1

3. Existence of 2-D water waves of permanent form (Involves a

nonlinear integro-differential equation)

Note: Nonconstructive proofs exist in cases 2. and 3.; not in 1



Blasius similarity problem

Blasius (1908) derived the two point BVP ODE:

f ′′′ + ff ′′ = 0 in (0,∞) with f(0) = 0 = f ′(0) , lim
x→∞

f ′(x) = 1

as similarity solution to fluid Boundary layer equations.

Generalization include f(0) = α, f ′(0) = γ

Much work (Topfer, 1912, Weyl, ’42, Callegari & Friedman ’68,

Hussaini & Lakin ’86, others. Existence and uniqueness known.

Related problem:

F ′′′ + FF ′′ = 0 in (0,∞) with F (0) = 0 = F ′(0) , F ′′(0) = 1

If limx→∞ F ′(x) = a > 0, then f(x) = a−1/2F
(

a−1/2x
)

.

Though this transformation, the two point BVP is turned into an

initial value problem; though convenient, transformation not

needed for quasi-solution approach.



Definitions

Let

P (y) =
12
∑

j=0

2

5(j + 2)(j + 3)(j + 4)
pjy

j
(1)

where [p0, ..., p12] are given by

[
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10445149
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65173

22093
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390101
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2326169
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,

4134879

7249
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1928001

1960
,

20880183

19117
,−

1572554

2161
,

1546782

5833
,−

1315241

32239

]

(2)

Define

t(x) =
a

2
(x+ b/a)2, I0(t) = 1 −

√
πteterfc(

√
t),

J0(t) = 1 −
√
2πte2terfc(

√
2t) (3)



Main Results

q0(t) = 2c
√
te−tI0 + c2e−2t

(

2J0 − I0 − I20
)

, (4)

Theorem: Let F0 be defined by

F0(x) =











x2

2
+ x4P

(

2
5
x
)

for x ∈ [0, 5
2
]

ax+ b+
√

a
2t(x)

q0(t(x)) for x > 5
2

(5)

Then, there is a unique triple (a, b, c) close to

(a0, b0, c0) =
(

3221
1946

,−2763
1765

, 377
1613

)

in the sense that (a, b, c) ∈ S where

S =

{

(a, b, c) ∈ R
3 :

√

(a− a0)2 +
1

4
(b− b0)2 +

1

4
(c− c0)2

≤ ρ0 := 5 × 10−5
}

(6)

with the property that F0 is an approximation to true solution F to the IVP.



Main Results

More precisely,

F (x) = F0(x) + E(x) , (7)

where the error termE satisfies

‖E′′‖∞ ≤ 3.5×10−6 , ‖E′‖∞ ≤ 4.5×10−6 , ‖E‖∞ ≤ 4×10−6
on [0,

5

2
]

(8)

and for x ≥ 5
2

∣

∣

∣
E
∣

∣

∣
≤ 1.69 × 10−5t−2e−3t ,

∣

∣

∣

d

dx
E
∣

∣

∣
≤ 9.20 × 10−5t−3/2e−3t

∣

∣

∣

d2

dx2
E
∣

∣

∣
≤ 5.02 × 10−4t−1e−3t

(9)



Construction of quasi-solution F0 for Blasius

Use numerical calculations and projection to Chebyshev basis on

I =
[

0, 5
2

]

.

The residual R = F ′′′
0 + F0F

′′
0 is a polynomial of degree 30; we

project it to Chebyshev basis: R(x) =
∑30

j=0 rjTj

(

4
5
x− 1

)

and

estimate ‖R‖∞ ≤ ∑30
j=0 |rj| ≤ 5× 10−7. Procedure generalizable

to multi-variables using product space representation.

For interval I =
[

5
2
,∞)

, any solution for which F ′(x) → a > 0 as

x → ∞ has the representation F (x) = ax+ b+G(x) where G is

exponentially small.

Applying exponential asymptotics theory (Costin, ’98),

G(x) =

√

a

2t(x)
q(t(x)) ,where q(t) =

∞
∑

n=1

ξnQn(t) ,where ξ =
ce−t

√
t

Two term trucation provides quasi-solution with small residual.



Analysis of Error term

To complete quasi-solution, need (a, b, c) approximately–through

numerical matching.

Note: Quasi solution determined empirically; not unique.

Anything that gives small residual R and approximately satisfies

boundary/initial condition is a candidate.

Rigor needed in proving R is uniformly small and that

E = F − F0 satisfying

LE := E′′ + F0E
′′ + EF ′′

0 = −R− EE′′,

and small initial/boundary conditons has a small bound.

The analysis for E involves inversion of L subject to

initial/boundary conditions and use of contraction arguments in

appropriate spaces. It is detailed and matching arguments at 5
2

are delicate but not out of the ordinary. We skip details.



Quasi-solution approach for general systems

The procedure described is quite general. For proving Dubrovin

conjecture for P-1: y′′ = 6y2 + z, we used a similar argument in

the complex z-plane.

No a priori limitation on the size of the system or the number of

variables/parameters, though the method is most transparent for

one independent variable. Error bound checks become more

computer assisted with multi-variables and parameters.

Rigorous error control does not need explicit Green’s function;

energy methods will do as long as residual E is small.

The accuracy can in principle be arbitrary, though the number of

terms needed in the quasi-solution may become prohibitive for

too high an accuracy. In some problems, inversion of L can give

rise to large bounds; in some cases one may need make

arguments in sub-domains to obtain refined estimates.



2-D symmetric steady water waves
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Background

Extensive history of water waves for more then 200 years, starting

with Laplace, Langrange, Cauchy, Poisson, Airy, Stokes, · · ·
Rigorous work for small amplitude waves by Nekrasov (1921),

Levi-Civita (1924)

Large Amplitude Wave analysis by Krasovskii (1961), Keady and

Norbury (1978), Amick and Toland (1981)

Numerical calculations also by a number of people including

Longuet-Higgins and Cokelet, Schwartz in midseventies

Other variations include waves with nonzero vorticity, finite depth

fluid, limiting cases lead to the KdV (work by Strauss, Bona, · · ·



Conformal Mapping approach

Steady symmetric 2-D water waves is equivalent to determining

analytic function f in |ζ| < 1 with property 1 + ζf ′ 6= 0 in |ζ| ≤ 1

and satisfying

Re f = − c2

2
∣

∣

∣
1 + ζf ′

∣

∣

∣

2 on |ζ| = 1

The wave height h = 1
2
[f(−1) − f(+1)]. One seeks (f, c) for

given h. For efficiency in representation, better to use

f =
∞
∑

j=0

fjη
j , where η =

ζ + α

1 + αζ
,

where α ∈ (0, 1) chosen in accordance to α = 22
27
h+ 3

2
h2 + 3h3

for h ∈ (0, hM), where hM ≈ 0.4454 · · · correspond to Stokes

highest wave that makes 120o angle at the apex.



Representation in the η domain

Re f = − c2

2
∣

∣

∣
1 + q(η)ηf ′(η)

∣

∣

∣

2 on |η| = 1 where

q(η) =
(η − α)(1 − αη)

η(1 − α2)

We define quasi-solution (f0, c0) so that f0 is analytic in |η| < 1

and on η = eiν , R0(ν) and R′
0(ν) are small, where

R0(ν) =
∣

∣

∣
1 + q(η)ηf ′

0(η)
∣

∣

∣

2

Re f0 +
c20
2

Also, require

(1 + ηqf ′

0) 6= 0 , for |η| ≤ 1

Note f0 is a polynonomial of order n, R0(ν) is a polynomial in

cos ν of order 2n+ 1.



Change of dependent variables

w = −2

3
log c+log (1 + ηqf ′) , implying

∣

∣

∣
1+ηqf ′

∣

∣

∣
= c2/3eRew ,

then w satisfies

d

dν
Rew + q−1e2Rew Im ew = 0 for η = eiν

We note

w(η) =

∞
∑

j=0

bjη
j , where bj is real

Since q(α) = 0, it follows that w(α) = −2
3
log c, i .e

−2

3
log c =

∞
∑

j=0

bjα
j



Quasi-solution under change of variable

Corresponding to the quasi-solution f0, we define

w0 = −2

3
log c0 + log

(

1 + ηq(η)f ′

0

)

Then, we can check that w0 satisfies

d

dν
Rew0+q

−1e2Rew0 Im ew0 = R(ν) := − R′
0(ν)

c20 − 2R0

−4A(ν)R0(ν)

3(c20 − 2R0)
,

2A(ν) = 3q−1e2Rew0 Im {ew0} =
3

c20
Im(ηf ′

0)
∣

∣

∣
1 + ηqf ′

0

∣

∣

∣

2

,

h0 = −(1 − α2)

2

∫ 1

−1

ew0(η)−w0(α) − 1

(η − α)(1 − αη)
dη ,with h− h0 small



Weakly nonlinear formulation for W = w − w0

W = w − w0 := Φ + iΨ on η = eiν satisfies:

L [Φ] :=
d

dν
Φ + 2A(ν)Φ + 2B(ν)Ψ = M̃[W ] −R(ν) =: r(ν) ,

2B(ν) = q−1e2Rew0 Re {ew0} =
1

c20

[

1 + qηf ′

0

]

∣

∣

∣
1 + ηqf ′

0

∣

∣

∣

2

,

M̃ [W ] := −2

3
A(ν)M1 − 2B(ν)M2 ,

whereM1 = e2Re W Re eW−1−3Re W ,M2 = e2Re W Im eW−ImW

Note

Ψ(ν) =
1

2π
PV

∫ 2π

0

Φ(ν′) cot
ν − ν′

2
dν′

Need inversion of L to obtain a weakly nonlinear integral equation

for Φ



Water wave error: Function Spaces

Definition: For fixed β ≥ 0, define A to be the space of analytic

functions in |η| < eβ with real Taylor series coefficient at the

origin, equipped with norm:

‖W‖A =
∞
∑

l=0

eβl
∣

∣

∣
Wl

∣

∣

∣
, whereW (η) =

∞
∑

l=0

Wlη
l

Define E to be the Banach space of real 2π-periodic even

functions φ so that

φ(ν) =

∞
∑

j=0

aj cos(jν) ,with norm ‖φ‖E :=

∞
∑

j=0

eβj|aj|

Define S to be Banach space of real 2π- periodic odd functions

ψ(ν) =
∞
∑

j=1

bj sin(jν) ,with norm ‖ψ‖S :=
∞
∑

j=1

eβj|bj| < ∞



Control on error W = w − w0

Define E1 subspace of E so that for Φ ∈ E1,

Φ = a0 +
∑∞

j=2 aj cos(jν).

When certain conditions depending on quasi-solution hold, then

the most general solution of LΦ = r is given by

Φ = Kr + a1G,

where K : S → E1 is a bounded operator with norm M that may

be estimated and G ∈ E
Proving steady symmetric water waves equivalent to proving

solution to weakly nonlinear integral equation:

Φ = −K[R] − KM[Φ] + a1G =: N [Φ],

for each a1 ∈ (−ǫ0, ǫ0) small enough interval, height constraint

determines a1. For a range of height h ∈ (0, hM), we show N is

contractive for chosen quasi-solutions (f0, c0)



Water Wave with h = 0.4359, highest speed
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Accurate quasi-solution for h = 0.4359

In this case c0 = 254979
233294

, α = 7997989622533
9000000000000

. Quasi-solution:

f̃0 = b0 +
15
∑

j=1

bj

j
ηj +

6
∑

m=1

λmγ
−1
m log (1 + γmη) , where

b =

[

− 7491

33875
,
3496

95411
,

421

16231
,

991

116428
,

6053

1113170
,

939

445538
,

2921

2444353
,

325

638894
,

359

1442979
,

229

2029023
,

213

4708117
,

111

5158825
,

31

4858465
,

24

7621883
,

34

64439691
,

33

123015796

]

γ =

[

30266

33767
,−39823

44724
,−36643

43855
,
9341

11348
,−46141

64708
,
17251

25880

]

λ =

[

− 6067

596979
,−42304

88055
,
1889

11944
,− 509

48108
,
5220

59461
,− 2169

181300

]



Quasi-solution as function of h

Quasi-solution representation available as a function of height h as well. For

smaller heights h ≤ 3
10

uniform expression involving polynomial of 15 th order

in η and 5-th order in h.

For larger heights, better to use representation for small intervals in h in terms

of low order polynomials in h

Rigorous error control possible for smaller heights uniformly in h; but for larger

heights, the proof with h parameter becomes unwieldly. We can give good

bounds for the worst case; i.e. largest height we tried, h = 0.4359.



Conclusion

1. With suitable quasi-solution u0, many strongly nonlinear

problems can be analyzed through weakly nonlinear analysis.

2. No a priori bar on the number of variables and/or parameters, as

long as suitable bounds on inversion of Frechet derivative is

possible; analysis most transparent for problems in one

variable with no parameters. Otherwise, the error estimate

calculation is more computer assisted.

3. ODE or systems of ODEs, including two point boundary value

problems are easily amenable. Opens the opportunity for

homoclinic-heteroclinic determination in higher dimension.

4. PDE similarity blow up or spectral analysis in 1+1 dimension

amenable to our type of analysis.

5. Look forward to working with colleagues here.

6. Papers available online.

http://www.math.ohio-state.edu/∼tanveer



Linear Problem LΦ = r for given a1 and r

We seek solution Φ =
∑∞

j=0 aj cos(jν) ∈ E to LΦ = r for given

a1 ∈ (−ǫ0, ǫ0) and r =
∑∞

j=1 rj sin(jν). Equivalent to solving for

a = (a0, 0, a2, a3, · · · ) ∈ H for given a1 and

r = (0, r1, r2, r3, · · · ) ∈ H, where H is the weighted l1 space with

norm ‖g‖H =
∑∞

j=0 e
βl|gl| and the following equations are

satisfied:

a0 +
∞
∑

l=2

al

2A1

(Al+1 −Al−1 +Bl−1 −Bl+1) =
r1

2A1

+
1

2A1

(1 − 2B0 −A2 +

2Ak

lk
a0 +

k−1
∑

l=2

al

lk
(Ak−l +Al+k +Bk−l −Bl+k) − ak

+
∞
∑

l=k+1

al

lk
(Al+k −Al−k +Bl−k −Bl+k) =

rk

lk
−a1

lk
(Ak−1 +Ak+1 +Bk−1
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