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ABSTRACT

We show that, for two commuting automorphisms of the torus and for

two elements of the Cartan action on compact higher rank homogeneous

spaces, many points have drastically different orbit structures for the two

maps. Specifically, using measure rigidity, we show that the set of points

that have dense orbit under one map and nondense orbit under the second

has full Hausdorff dimension.
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1. Introduction

Let f : X → X be a dynamical system on a set X with a topology. If f is an

endomorphism, we will always only consider the forward orbits of points x ∈ X

and, if f is an automorphism, we will work with full two-sided orbits. Let us say

that a point has dense orbit if its orbit closure equals X and nondense orbit

otherwise. We will denote by D(f) the set of points with dense orbit and by

ND(f) the set of points with nondense orbit. A natural question one could ask

about f is: what is the nature of the setsD(f) andND(f)? One way to quantify

this nature is by some notion of size such as density, cardinality, Hausdorff

dimension, or measure (assuming that these notions apply to X). Instances of

this question have been answered for many ergodic dynamical systems. The

gist of these answers is that many ergodic systems that have some hyperbolic

or expanding behavior have, in addition to D(f) having full measure, also the

property that ND(f) is winning in the sense of Schmidt games, from which it

follows that both D(f) and ND(f) have full Hausdorff dimension (see [1, 2, 4,

5, 6, 15, 18, 19, 25, 32, 33] for example.

Now, given another dynamical system f̃ on X , the natural extension of our

question is to the joint behavior of the pair of systems. For these systems,

ergodicity under both maps immediately implies that the set D(f) ∩ D(f̃) of

points with dense orbits under both maps is of full measure. Similarly, winning

immediately implies that the set ND(f)∩ND(f̃) of points with nondense orbits

under both maps is of full Hausdorff dimension. Finally, there is the mixed case

D(f) ∩ ND(f̃), which is not amenable to either the full-measure or winning

techniques (as the intersection will be neither). The subject of this paper is this

mixed case, where we will restrict ourselves to the case where f and f̃ commute

with each other. We say a set A ⊂ X is jointly invariant under f and f̃ if

f(A) ⊂ A and f̃(A) ⊂ A.

It is clear that D(f)∩ND(f̃) could be empty. For example, this could occur

if there exists a nontrivial topological factor of X on which f and f̃ are equal or

just too closely related. Therefore, the mixed case requires more assumptions.

We consider two types of systems.

The first type of systems we consider is the case of commuting automorphisms

T and S of the d-dimensional torus Td. Consider the Z2-action α on Td that is

generated by T and S. This action is called irreducible if there are no proper,
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infinite, closed subgroups which are jointly invariant under the action. A Z2-

action α′ on a torus Td′
is an algebraic factor of α if there is a surjective toral

homomorphism h : Td → Td′
such that α′ ◦h = h◦α and is a rank-one factor

if, in addition, α′(Z2) has a finite-index subgroup consisting of the powers of

a single map. An endomorphism or automorphism of Td is hyperbolic if its

associated matrix has no eigenvalues on the unit circle in the complex plane.

Let dim(·) denote Hausdorff dimension.

Our main results are the following.

Theorem 1.1: Let T, S be commuting automorphisms of the torus Td for d ≥ 2

such that T and S generate an algebraic Z2-action without rank-one factors.

Assume that T is hyperbolic. ThenND(T )∩D(S) has full Hausdorff dimension.

Corollary 1.2: Fix an algebraic Z2-action on Td without rank-one factors

and let T be a hyperbolic element of the action. Let {Sk} be the family of all

maps which meet the conditions on S in Theorem 1.1. Then ND(T )∩⋂k D(Sk)

has full Hausdorff dimension.

Recall that the unstable foliation of a hyperbolic toral endomorphism T is

comprised of a family of unstable manifolds of the same dimension ≥ 1. We

denote this dimension by dim(Wu(T )).

Theorem 1.3: Let T, S be commuting hyperbolic epimorphisms of the torus

Td for d ≥ 1 such that T and S generate an algebraic action without rank-one

factors. Then

dim(ND(T ) ∩D(S)) ≥ dim(Wu(T )) ≥ 1.

We also consider commuting partially hyperbolic maps on homogeneous

spaces.

Theorem 1.4: Let G be a connected semi-simple Lie group such that each

simple normal subgroup of G has R-rank ≥ 2. Let a1, a2 belong to a maximal

abelian R-diagonal subgroup of G and assume that they correspond to linearly

independent directions in every simple factor of the Lie algebra of G. Let Γ ⊂ G

be a cocompact lattice in G. Let θ1, θ2 be the actions on X = Γ\G associated

with a1, a2, respectively. Then ND(θ1) ∩D(θ2) has full Hausdorff dimension.
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Corollary 1.5: Let X, a1, and θ1 be as in Theorem 1.4. If, for a countable

collection of maps {θ2,k}, each map meets the conditions on θ2 in Theorem 1.4,

then ND(θ1) ∩
⋂

k D(θ2,k) has full Hausdorff dimension.

Remarks 1.6: Commuting maps T and S are called multiplicatively depen-

dent if there exist (t, s) ∈ Z2\{(0, 0)} such that T t = Ss and, otherwise, are

multiplicatively independent. If T and S are multiplicatively dependent

then we have ND(T )∩D(S) = ∅. If T and S generate a Z2-action on Td, then

either it has no rank-one factors and Theorem 1.1 (respectively, Theorem 1.3)

applies or it has a factor on which the maps are multiplicatively dependent.

We note that our results can be viewed as weak versions of Host’s theorem

[16] for much more general dynamical systems. In fact, Host has shown in [16]

that for a ×2-invariant and ergodic probability measure μ on T with positive

entropy, μ-a.e. point is generic for the ×3-map and the Lebesgue measure on

T. Our method of proof is similar to the theorem of Johnson and Rudolph [17]

who proved an averaged version of Host’s theorem and also to the argument in

[7] and [31].

We note that the compactness assumption in Theorem 1.4 and Corollary 1.5,

while used in this paper via the variational principle and the Ledrappier–Young

formula, may not be necessary.

We also believe that ND(T1) ∩ND(T2) ∩D(S1) ∩D(S2) is non-empty and

may even be of full Hausdorff dimension for commuting maps T1, T2, S1, S2 in

general position to each other, but our method does not seem to extend to that

case.

We make essential use of the assumption that the two maps commute. If they

do not commute, completely different techniques are required (see [24]).

1.1. Organization of this paper. The proofs of the toral case (Theorems

1.1 and 1.3) and the Lie group case (Theorem 1.4) involve two steps: finding a

certain measure and using that measure to derive the desired dimension result.

The first step is very similar for both cases and is presented in Sections 2 and 3.

We present the toral case and describe the changes necessary for the Lie group

case. The second step is (slightly) different for the two cases and is presented

in Section 4. For the toral case, we apply the Ledrappier–Young formula. For

the Lie group case the central directions require extra care.



Vol. 210, 2015 SIMULTANEOUS DENSE AND NONDENSE ORBITS 27

2. Averaging gives Haar measure

The first steps of the proofs of Theorems 1.1, 1.3, and 1.4 are similar. We start

the proof with the case of a torus.

2.1. Measure Rigidity for commuting toral endomorphisms. The key

to this first step of our proof is the following measure rigidity result [9, Theorem

1.3]. For this let us recall that a solenoid is a connected compact abelian group

whose dual group has finite rank. The reason why solenoids are important for

us is that the invertible extension of a surjective endomorphism R : Td → Td

gives an automorphism R̂ : X → X of a solenoid X . In fact the invertible

extension can be realized as the shift map on the solenoid

X = {(xn) ∈ (Td)Z | T (xn) = xn+1 for all n ∈ Z}.
Theorem 2.1 (Measure rigidity): Let α be a Z

d-action (d ≥ 2) by automor-

phisms of a solenoid X . Suppose α has no rank-one factors, and let μ be an

α-ergodic measure on X . Then there exists a subgroup Λ ⊂ Zd of finite index

and a decomposition μ = 1
M (μ1+· · ·+μM ) of μ into mutually singular measures

with the following properties for every i = 1, . . . ,M .

(1) Every measure μi is αΛ-ergodic, where αΛ is the restriction of α to Λ.

(2) There exists an αΛ-invariant closed subgroupGi such that μi is invariant

under translation under elements in Gi, i.e., μi(A) = μi(A + g) for all

g ∈ Gi and every measurable set A.

(3) For n ∈ Z
d, α(n)∗μi = μj for some j and α(n)(Gi) = Gj .

(4) Every measure μi induces a measure on the factor X/Gi with

hμi(α(n)X/Gi
) = 0 for any n ∈ Λ. (Here αX/Gi

denotes the action

induced on X/Gi.)

Remark 2.2: A complete proof of the special case of [9, Theorem 1.3] for irre-

ducible systems is given in the research announcement [9]. The general case

will appear in [13].

The restriction to a finite index subgroup Λ of the acting group Zd may be

necessary since there may exist a subtorus G1 < Td that is invariant under Λ

but not under Zd.

Corollary 2.3 (High entropy case): Let T, S be commuting hyperbolic epi-

morphisms of the torus Td for d ≥ 1 or commuting automorphisms of the torus

T
d for d ≥ 3 such that the induced Z

2-action has no rank-one factor. If μ is
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a T, S-invariant ergodic probability measure on Td with hμ(T ) close enough to

the topological entropy htop(T ), then μ is the Haar measure.

Proof. Let us first assume that T and S are invertible and d ≥ 3. We define

κ ∈ (0, 1) by

κ =
max

∑′
λ log

+(|λ|)∑
λ log

+(|λ|) ,

where the sum in the denominator runs over all the eigenvalues λ of the matrix

corresponding to T of absolute value bigger than one taking into account the

algebraic multiplicity of each eigenvalue, and
∑′

denotes any sum where one of

the eigenvalues is dropped or one of the multiplicities is reduced.

Now suppose μ is a T, S-invariant and ergodic probability measure on Td with

hμ(T ) > κhtop(T ). We apply Theorem 2.1 to find Λ and G1. As Λ has finite

index in Z2 there exists some n ≥ 1 such that (n, 0) ∈ Λ and so T n preserves

G1 and hμ1(T
n
X/G1

) = 0. We claim that for κ ∈ (0, 1) as above we must have

G1 = Td and so μ is the Lebesgue measure on Td.

In fact, if G1 < Td is a proper subgroup, then by the Abramov–Rokhlin

entropy addition formula

hμ1(T
n) = hμ1(T

n
X/G1

) + hμ1(T
n|BX/G1

),

where BX/G1
⊂ BTd denotes the Borel sub-σ-algebra corresponding to the factor

X/G1. Now we apply the standard inequality of entropy (see, for instance, [10,

Thm. 7.9]) for the relative entropy hμ1(T
n|BX/G1

) which gives

hμ1(T
n|BX/G1

) ≤
∑
ζ

log+(|ζ|),

where the sum goes over all the eigenvalues ζ of the matrix corresponding to

T n when restricted to the rational subspace corresponding to G1 with algebraic

multiplicity. While G1 may not be invariant under the matrix corresponding

to T , it is clear that the eigenvalues ζ of the matrix corresponding to T n when

restricted toG1 are n-th powers of the eigenvalues λ of the matrix corresponding

to T . Moreover, sinceG1 is a proper subtorus either the former set of eigenvalues

is a proper subset or for one of the eigenvalues the corresponding multiplicities
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disagree. Therefore,

hμ(T ) =
1

n
hμ(T

n) =
1

n
hμ1(T

n|BX/G1
)

≤ 1

n

∑
ζ

log+(|ζ|) ≤ κ
∑
λ

log+(|λ|) = κhtop(T ),

which contradicts our assumption on μ.

If either T or S is not invertible, then we construct the invertible extension

X of Td (e.g., using the map R = ST ) and apply Theorem 2.1 in the same way

to this solenoid.

To use Corollary 2.3, we must relate topological entropy to dimension. For

hyperbolic toral endomorphisms or automorphisms, all directions are either

expanding or contracting (i.e., the mapping is Anosov). Only the expanding

directions contribute to the entropy. Let |λ1| > 1 be the largest absolute value

of an eigenvalue of the matrix corresponding to T . Let X = Td.

Proposition 2.4: Let F ⊂ X be a closed, T -invariant set. Then we have that

htop(T |F ) ≥ htop(T )− (d− dimF ) log(|λ1|).
2.2. Proof of Proposition 2.4. We follow the standard proof for computing

the topological entropy of toral endomorphisms (see, for example, [3, Proposi-

tion 2.6.2]), but with changes to accommodate the set F . Let tb be the lower

box dimension of F . Then Rd =
⊕

Vλ ⊕⊕
Vλ,λ̄ where Vλ is the generalized1

eigenspace for λ ∈ R and Vλ,λ̄ for λ ∈ C\R. Since there is no need to dis-

tinguish between generalized eigenspaces for real and non-real eigenvalues, we

index them as follows:

R
d =

m⊕
i=1

Vi,

where the indices 1, . . . , k correspond to the expanding generalized eigenspaces

and k+1, . . . ,m to the contracting such that the corresponding eigenvalues for

each generalized eigenspace are ordered

(2.1) |λ1| ≥ · · · ≥ |λk| > 1 > |λk+1| ≥ · · · ≥ |λm| > 0.

1 If the eigenvalue λ is real, then the generalized eigenspace is simply the maximal subspace

on which λ is the only eigenvalue—allowing Jordan blocks. If the eigenvalue λ is complex,

we take the corresponding sum of the generalized eigenspaces Vλ+Vλ̄ ⊆ Cd and intersect

it with Rd.
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Let di = dim(Vi) and let dcon denote the sum of the dimensions of the con-

tracting generalized eigenspaces—note that dcon may be equal to 0. We use T

to denote both the linear map on Rd and its induced map on Td, relying on

context to distinguish the two maps.

For each generalized eigenspace Vi, pick an orthonormal basis and impose the

sup norm ‖ · ‖i. The metric

d(v, w) := max(‖v1 − w1‖1, . . . , ‖vm − wm‖m)

for vectors v = v1 + · · · + vm and w = w1 + · · · + wm (where vi, wi ∈ Vi) is

invariant under translations and hence induces a metric on Td, which is also

denoted by d and is given by considering the distance between cosets in Rd. To

compute topological entropy, we also define

dn(v, w) := max{d(f j(v), f j(w)) | 0 ≤ j ≤ n− 1}.

For one-dimensional Vi, the corresponding eigenvalues are real and T (vi) =

λvi is contraction or expansion by λ. For the other types of Vi, this type of

behavior, roughly speaking, also holds ([3, Lemma 2.6.3]):

Lemma 2.5: Let λ be the eigenvalue for Vi. Then for every δ̃ > 0 there is a

C(δ̃) ≥ 1 such that

C−1(|λ| − δ̃)n‖v‖i ≤ ‖T n(v)‖i ≤ C(|λ| + δ̃)n‖v‖i
for every n ∈ N, every generalized eigenspace Vi, and every v ∈ Vi.

We need to pick a small enough positive δ̃ to separate eigenvalues. Choose

0 < δ̃ ≤ min
{ |λk|−1

4 , 1−|λk+1|
4

}
if k < m,

0 < δ̃ ≤ |λk|−1
4 if k = m.

The union of the orthonormal bases of all generalized eigenspaces is a basis

for Rd. Fix this basis. A parallelepiped P (with respect to this basis) is

a d-dimensional closed parallelepiped with edges parallel to the basis elements.

The center of the parallelepiped P is the point in Rd that is the barycenter of P .

The next lemma tells us that a ball in the dn metric is, roughly, a parallelepiped

in the d metric.

Lemma 2.6: Let n ≥ 0. Let A denote a closed ball in the dn metric of radius

ε > 0 around the point 0 and B := B(ε, n) denote the closed parallelepiped
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around center 0 whose edges parallel to the basis vectors of Vi are all equal in

length (with respect to the d metric) to

• 2C(|λi| − δ̃)1−nε for 1 ≤ i ≤ k (i.e., the expanding eigenspaces) and

• 2Cε for k + 1 ≤ i ≤ m (i.e., the contracting eigenspaces, if present).

Then A ⊂ B.

Proof. Since the action of T respects the splitting into these generalized eigen-

spaces, we may consider each such eigenspace separately. Let v ∈ A∩ Vi. Then

max{‖T jv‖i|0 ≤ j ≤ n− 1} ≤ ε.

There are two cases: the expanding and the contracting.

Let Vi be an expanding generalized eigenspace. By Lemma 2.5, we have

C−1(|λi| − δ̃)n−1‖v‖i ≤ ε

because |λi| − δ̃ > 1.

Now let Vi be a contracting generalized eigenspace. Setting j = 0 we see that

‖v‖i ≤ ε ≤ Cε.

Applying the length constraints on B gives the desired result.

Choose a small ε > 0 and define δn := C(|λ1|− δ̃)1−nε. (Recall that λ1 is the

eigenvalue with largest absolute value.) Let

• NF (δn) be the minimal number of balls of radius δn needed to cover F

in the d metric,

• C̃ov
′
F (ε, n) be the minimal number of translated parallelepipeds of the

same orientation and side lengths as B(ε, n) from Lemma 2.6 needed to

cover F ,

• C̃ovF (ε, n) be the minimal number of balls of radius ε needed to cover

F in the dn metric, and

• CovF (ε, n) be the minimal number of sets, contained in F , of diameter

≤ ε needed to cover F in the dn metric.

Lemma 2.6 has the following immediate corollary:

Corollary 2.7: C̃ovF (ε, n) ≥ C̃ov
′
F (ε, n).

Likewise, we have

Lemma 2.8: CovF (ε, n) ≥ C̃ovF (ε, n).
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Proof. Any subset of F with diameter (in the dn metric) ≤ ε is contained in

a closed ball of Td (in the dn metric) of radius ε. Take a covering of F with

cardinality CovF (ε) and put each element of this covering into a closed ball

of radius ε. Hence we obtain a covering by closed balls and the result is now

immediate.

Let P,Q be (closed) parallelepipeds with respect to the basis. Let the edges

of P be integer multiple lengths (in the d metric) of the respective edges of

Q—let vj be a basis vector and 
j be the ratio of the side lengths of P and Q in

the direction of vj . Then a tiling of P by Q is a finite collection of translates

of Q, {Q+ v : v ∈ I}, such that

(1) P =
⋃
v∈I

Q+ v and

(2) (Q+ v) ∩ (Q+ v′) is for any pair v,v′ either empty or a complete face.

The cardinality of the tiling is
∏d

j=1 
j . If the integer multiple condition no

longer holds for all edges, then one can generalize the notion of tiling as follows.

Given P as above, and a parallelepiped Q with respect to the basis, which has

a translate Q+w contained in P , let


j :=
length of an edge of P parallel to the basis vector vj
length of an edge of Q parallel to the basis vector vj

≥ 1.

(Here both lengths are with respect to the d metric.) Then a tiling of P by Q

is a collection of translates of Q with cardinality
∏d

j=1�
j
, {Q+ v}, such that

condition (2) above holds and condition (1) is replaced with

P ⊂
⋃
v

Q+ v.

Recall that di = dim(Vi) and dcon is the sum of the dimensions of the con-

tracting generalized eigenspaces. With these notions we obtain the following:

Lemma 2.9:

�(|λ1| − δ̃)(n−1)
dcon

k∏
i=1

⌈( |λ1| − δ̃

|λi| − δ̃

)(n−1)⌉di

C̃ov
′
F (ε, n) ≥ NF (δn).

Proof. Take a covering corresponding to C̃ov
′
F (ε, n)—this is a covering by par-

allelepipeds with side lengths given by the formulas in Lemma 2.6. A ball in
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the d metric is also a parallelepiped with respect to the basis. Pick an element

P of the covering. Tile P using such balls of radius δn.

The cardinality of this tiling is

�(|λ1| − δ̃)(n−1)
dcon

k∏
i=1

⌈( |λ1| − δ̃

|λi| − δ̃

)(n−1)⌉di

.

Tiling the other elements of the covering C̃ov
′
F (ε, n) in the analogous way

yields a covering of F by balls (in the d metric) of radius δn. The desired result

is now immediate.

The lemma has an immediate corollary:

Corollary 2.10:

2d(|λ1| − δ̃)d(n−1)
k∏

i=1

1

(|λi| − δ̃)di(n−1)
C̃ov

′
F (ε, n) ≥ NF (δn).

Since the d metric is induced by a norm and since all norms are equivalent on

Rd, we have by the definition of lower box dimension tb the following inequality

for all sufficiently big n:

log(NF (δn)) ≥ (tb − δ̃) log
(1
δ n

)
.

Applying Corollaries 2.7 and 2.10 and Lemma 2.8 yields

CovF (ε, n) ≥ 1

δtb−δ̃
n

2−d(|λ1| − δ̃)−d(n−1)
k∏

i=1

(|λi| − δ̃)di(n−1)

≥ (Cε)−tb+δ̃2−d(|λ1| − δ̃)(tb−d−δ̃)(n−1)
k∏

i=1

(|λi| − δ̃)di(n−1).

Applying the definition of topological entropy yields

htop(T |F ) = lim
ε→0+

lim sup
n→∞

1

n
log(CovF (ε, n))

≥ (tb − d− δ̃) log(|λ1| − δ̃) +

k∑
i=1

di log(|λi| − δ̃).
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Since this calculation holds for all δ̃ small enough, we have that

htop(T |F ) ≥ (tb − d) log(|λ1|) +
k∑

i=1

di log(|λi|)

= htop(T )− (d− tb) log(|λ1|).
Since lower box dimension is greater than or equal to Hausdorff dimension,

we have shown Proposition 2.4.

2.3. Averaging measures. LetX be either Td or Γ\G. A subset ofX is called

thick ([21]) if its intersection with any nonempty open set of X has Hausdorff

dimension equal to that of X itself and called winning if it is winning in the

sense of Schmidt games [29] (or in the sense of the variations on Schmidt games

[20] and [27]). The property of being thick is implied by (any of the variations

on) winning and is the property that concerns us.2 In particular, the set of

points with nondense orbits is thick (see [5], [32], and [2] for the toral case and

[19] and [21] for the Lie group case).

Let T, S be the two commuting actions on X and x0 be a point of X . Fix

a sequence of open balls Uq centered at x0 and whose radius → 0 as q → ∞.

Define

E(q) := ET,x0(q) := {x ∈ X | OT (x) ∩ Uq = ∅},
where OT (x) denotes either the forward orbit for T an endomorphism or the full

orbit for T an automorphism. Note that E(q) is a closed T -invariant set. And

the union
⋃

q E(q) is the subset of points whose orbit closures do not contain

x0. The union has large Hausdorff dimension:

Proposition 2.11: The set
⋃

q E(q) is thick and, for the case of the torus,

winning and, therefore,
⋃

q E(q) has full Haudorff dimension.

Proof. Apply [2, Theorem 1.1] and [19, Theorem 1.1].

The proposition implies that dim(E(q)) → dim(X) as q → ∞. Thus, applying

also Proposition 2.4 shows that htop(T |E(q)) ≈ htop(T ) for q large enough.

Next, an application of the variational principle shows that there exists a Borel

2 Since we only need to be aware of two properties of winning sets (that they have full

Hausdorff dimension and that the winning property is preserved under taking countable

intersections), we omit the definition, which was introduced in [29] with later adaptations

in [27] (and others). A convenient summary of the theory of winning sets can be found

in [14, Section 2.1].
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probability measure ν (whose support lies in E(q)) invariant under T such that

hν(T |E(q)) is as close to htop(T ) as we like, provided that we choose q large

enough.

Let μ be the weak-∗ limit along a subsequence of Ns of the averaging mea-

sures3:

μN :=
1

N

N−1∑
n=0

Sn
∗ ν.

Any such measure μ is S-invariant.

Lemma 2.12: The measure μ is T -invariant.

Proof. By commutativity, the measures Sn
∗ ν are T -invariant, the same holds

for the convex combination μN and therefore also for the limit μ.

Lemma 2.13: By choosing q large enough, we can have hμ(T ) as close to htop(T )

as we like.

Proof. As is well known, a factor map may only decrease entropy. This shows

that hSnν(T ) ≤ hν(T ). On the other hand, Sn is a finite-to-one factor map from

which one sees that in fact hSnν(T ) = hν(T ). Due to the convexity of entropy

this implies that hμN (T ) = hν(T ). Finally, it follows by the upper semiconti-

nuity of measure-theoretic entropy that hμ(T ) ≥ hν(T ), and, consequently, we

can have hμ(T ) as close to htop(T ) as we like.

Let mX denote the probability Haar measure on X .

Proposition 2.14: The probability Haar measuremX is an ergodic component

of μ (of positive proportion).

Proof. Let E be the σ-algebra of jointly T - and S-invariant Borel subsets of X .

The ergodic decomposition of μ with respect to the joint action can be obtained,

for instance, via the decomposition of measures

μ =

∫
X

μE
xdμ(x)

for the σ-algebra E. Convexity of entropy gives

hμ(T ) =

∫
X

hμE
x
dμ(x).

3 As an analogue to the result in [17] we believe that the full sequence actually converges

to the Haar measure but we neither need this statement nor do we have a proof.
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This shows that for a positive proportion of x∈X we must have hμE
x
(T )≥hμ(T ).

If hμ(T ) is sufficiently close to htop(T ), we may apply measure rigidity (i.e.,

Corollary 2.3) for each such μE
x and obtain the proposition.

2.4. The Lie group case. We now show how to derive the same results for

the Lie group case. Let G,Γ, and X be as in Theorem 1.4. Explicitly, G is a

semisimple, real Lie group such that each factor has R-rank ≥ 2, and Γ is a

lattice of G. Assume furthermore that α : Z2 → G is the parametrization of

a subgroup of a maximal Cartan subgroup of G that projects injectively and

discretely to each simple factor. We will identify α also with the induced action

on the right of X = Γ\G. We write αt for the action of an individual element

of a two-dimensional subgroup of the Cartan subgroup where t ∈ Z2. In this

situation we can use [8, Theorem 2.4] which contains in particular the following

result.

Theorem 2.15 (Measure rigidity): Let G, Γ, and α be as above and t �= 0 be

a fixed element. If μ is an α-invariant ergodic probability measure on Γ\G with

hμ(α
t) close enough to htop(α

t), then μ is the Haar measure on X .

Let λ̃ be a nonzero root of G with respect to the Cartan subgroup that

contains the image of α. The root λ̃ can be expressed as a linear map on

the Lie algebra of the Cartan subgroup which we may identify with the Cartan

subgroup. Let gλ̃ be the root space corresponding to λ̃. Then the adjoint action

of αt on gλ̃ is multiplication by the eigenvalue λ := eλ̃(t).

Fixing the element αt, we can order the absolute value of the eigenvalues from

each of the roots to reproduce (2.1)—which, recall, is counted with multiplicity.

For the Lie group G, the action is only partially hyperbolic—in particular, its

Lie algebra is g = h+ ⊕ h0 ⊕ h−, and, on those subgroups corresponding to

the direct summands of g, the action expands, stays isometric, or contracts,

respectively. As in the toral case, only the expanding directions, which corre-

spond to the roots for which |λ| > 1, contribute to the entropy. It is well-known

that the topological entropy (or the entropy with respect to Haar measure) is

the sum of the logarithms of the absolute values of these expanding eigenvalues

counted with multiplicity according to the real dimension of their corresponding

eigenspaces for the adjoint representation:

htop(α
t) =

k∑
i=1

log |λi| dim(gλi) =
∑

λ̃(t)>0

λ̃(t) dim(gλ̃).
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Let a1, a2, θ1, θ2 be as in Theorem 1.4. We may define the subgroup α in

such a way that θ1 = α(e1) and θ2 = α(e2). Using the exponential map, which

is a local diffeomorphism and bi-Lipschitz in a neighborhood of the origin, we

see that the proof of Proposition 2.4 for the torus case is also valid for the Lie

group case (with T replaced by θ1). In fact, the proof of Proposition 2.4 is

slightly easier in the Lie group case as the elements of the Cartan subgroup

are diagonalizable on the Lie algebra with real eigenvalues, hence we may work

with real eigenspaces instead of generalized eigenspaces as in the torus case.

Now Section 2.3 is also valid for the Lie group case, provided that one replaces

T by θ1 and S by θ2 and uses the correct version of measure rigidity, namely

Theorem 2.15.

Remark 2.16: If G has precisely R-rank two, Γ is irreducible, and α parametrizes

the Cartan subgroup, then an analogue of Theorem 2.15 can be derived from

[11, Theorem 1.1 and Corollary 1.2]. In fact, Theorem 2.15 should hold very

generally, but, as an example, for a two-dimensional subgroup in general posi-

tion of the Cartan subgroup of G = SL2(R)3 this does not follow from [8] or

[11]. See also [12, Thm. 1.4], where a related high entropy theorem is proven

under milder (but still not weakest possible) assumptions.

3. Equidistribution of E(q) under S

Let X be either Td or Γ\G. We will write T and S for the two commuting maps

that we consider on X . As before, let

D(S) = {x ∈ X | OS(x) = X}

where OS(x) denotes either the forward orbit for S an endomorphism or the

full orbit for S an automorphism.

Lemma 3.1: The set D(S) is T -invariant.

Proof. If x /∈ D(S) so that OS(x) ⊂ X is a closed proper S-invariant sub-

set, then both T (OS(x)) and T−1(OS(x)) are again closed proper S-invariant

subsets. Therefore, x /∈ D(S) implies T (x) ∈ D(S) and T−1(x) ∈ D(S)

(resp. T−1(x) ⊂ D(S) if T is not invertible).
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We will write d(·, ·) for a metric on X . Now let {xi : i = 1, . . .} be a dense

subset of X . Using this set we will define in a moment a countable partition of

ND(S) = X \D(S),

where we will use a total order of N × N. We define (i, n) < (i′, n′) if either

i+ n < i′ + n′ or i+ n = i′ + n′ and i < i′. Now we define inductively

ND(1, 1) ={x ∈ X | d(OS(x), x1) ≥ 1},

ND(i, n) ={x ∈ X | d(OS(x), xi) ≥ 1

n
} \

⋃
(j,m)<(i,n)

ND(j,m)

for all (i, n) ∈ N × N. It is clear that ND(1, 1) and
⋃

(j,m)≤(i,n) ND(j,m) are

closed sets, and that ND(S) =
⋃

(i,n) ND(i, n).

Recall the definition of the proper T -invariant closed sets E(q) from Section

2.3. Pick q large so that E(q) is a set with close to maximal dimension and

close to maximal topological entropy for T . Using the variational principle,

we choose a T -invariant measure on E(q) of entropy close to the topological

entropy of T |E(q). By convexity of measure-theoretic entropy and the ergodic

decomposition, we may assume that ν is T -invariant and ergodic. Specifically,

we have the following corollary to the measure rigidity results.

Theorem 3.2: For large enough q, we have that ν(D(S)) = 1.

3.1. Proof of Theorem 3.2. Recall that we assume (as we may) that ν

is ergodic w.r.t. T and that D(S) is T -invariant by Lemma 3.1. We assume

indirectly that ν(D(S)) = 0. Then we may decompose ν into ν =
∑

(i,n) ν(i,n)
where ν(i,n) = ν|ND(i,n) for all (i, n) ∈ N × N. Using the Tychonoff–Alaoglu

theorem we may choose a subsequence Nk of the integers such that for all (i, n)

the average

1

Nk

Nk−1∑
m=0

Sm
∗ ν(i,n)

converges in the weak∗ topology to an S-invariant measure μ(i,n). In particular,

we obtain that 1
Nk

∑Nk−1
m=0 Sm

∗ ν converges to an S-invariant probability measure

μ =
∑

(i,n) μ(i,n). Note that by Lemma 2.12, μ is also T -invariant (but the same

may not be true for μ(i,n)).

Fix some (i, n) ∈ N×N. As ν(i,n)-a.e. point x ∈ X satisfies d(Sm(x), xi) ≥ 1
n

it follows that Sm
∗ ν(i,n) gives zero mass to the 1

n -ball B
X
1
n

(xi) around xi. This
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implies furthermore that μ(i,n)(B
X
1
n

(xi)) = 0. Since μ(i,n) is an S-invariant

measure we conclude that μ(i,n) is singular to the Haar measure mX of X .

Since (i, n) was arbitrary we obtain that μ =
∑

(i,n) μ(i,n) is singular to the

Haar measure mX of X . However, this contradicts Proposition 2.14 which said

that μ has the Haar measure as an ergodic component for the joint action of

T and S with positive proportion. This contradiction shows that we must have

ν(D(S)) = 1 and concludes the proof of Theorem 3.2.

4. Hausdorff dimension from ν

In this section, we derive our main results, Theorems 1.1, 1.3, and 1.4.

4.1. Proof of Theorems 1.1 and 1.3. There are two ingredients: Theorem

3.2 and the formula relating entropy, dimension, and Lyapunov exponents de-

veloped by Ledrappier and Young in [22] and [23]. First, we present the case

of toral automorphisms. Then we present the changes necessary for the case of

toral endomorphisms.

4.1.1. Toral automorphisms. Pick q large so that the ergodic measure ν on

E(q) from Theorem 3.2 has measure-theoretic entropy hν(T |E(q)) close to

htop(T ) (see Section 2.3) and the conclusion of the theorem applies. We use

the Ledrappier–Young formula ([23], Theorem C′):

Theorem 4.1 (Ledrappier–Young Formula): Let f : M → M be a C2-diffeo-

morphism of a compact Riemannian manifold and let m be an ergodic Borel

probability measure on M . Let κ1 > · · · > κu denote the distinct positive

Lyapunov exponents of f , and let δi be the dimension ofm on theW i-manifolds.

Then for 1 ≤ i ≤ u there are numbers γi with 0 ≤ γi ≤ dim(Ei), such that

δi =
∑
j≤i

γj

for i = 1, · · · , u and

hm(f) =
∑
i≤u

κiγi.

Here the W i denotes the i-th unstable manifold for the dynamical system

(which is tangent to
⊕

j≤i Ej). In particular, Wu is the unstable manifold.
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The full set of Lyapunov exponents (positive, zero, and negative) gives rise to

the corresponding decomposition of the tangent space at x,

E1(x) ⊕ · · · ⊕ Er(x).

In our case these subspaces of course simply correspond to the generalized

eigenspaces. Moreover, the set of Lyapunov exponents (for T ) is {log |λi|}
where the λi are the eigenvalues from Section 2.2—note that the indexing of the

Lyapunov exponents, the κj , and the indexing of the eigenvalues, the λi, may

not match because the Lyapunov exponents are distinct, while the eigenvalues

can contain duplicates.

As previously noted, we have that htop(T ) =
∑

i≤u κi dim(Ei) where the

sum is over all the positive Lyapunov exponents. Since, for our choice of q,

hν(T ) = hν(T |E(q)) is close to htop(T ) and, by the Ledrappier–Young formula,

each 0 ≤ γi(q) ≤ dim(Ei), we have γi(q) → dim(Ei), as q → ∞. Again applying

the Ledrappier–Young formula, we have that

(4.1) δu(q) =
∑
i≤u

γi(q) → dim(Wu)

as q → ∞.

Now δu is the dimension of ν on the Wu-manifold, which we now define

following [22] and [23]. The measure ν gives rise to conditional measures νux on

Wu(x) (for ν-a.e. point x)—note that νux gives full measure to E(q) ∩Wu(x).

The conditional measures allow us to define a pointwise dimension. We first

state the general definition: the pointwise dimension of a measure m at x

is defined to be

lim
ε→0+

logm(B(x, ε))

log ε

should the limit exist. Then Proposition 7.3.1 of [23] states that the pointwise

dimension of νux at x for ν-a.e. x exists and is equal to δu.

Now, since ν(D(S)) = 1 by Theorem 3.2, we have that νux (X \ D(S)) = 0

for ν-a.e. x. Applying the mass distribution principle, following Young [34], we

have that

(4.2) dim(D(S) ∩ E(q) ∩W u(x)) ≥ δu(q) for ν-a.e. x.

Since the mapping T is invertible, we note that E(q) is also T−1-invariant.

Also, it is well-known that htop(T
−1) = htop(T ) and hν(T

−1) = hν(T ). Now, for

T−1, the unstable and stable manifolds switch. Thus, applying the preceding to
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T−1 but keeping the notation for stable and unstable manifolds for T , we have

that (4.1) states that the dimension δs(q) of ν along the W s-foliation satisfies

(4.3) δs(q) → dim(W s)

as q → ∞. Let B1 = {x | (4.2) holds for x} so that ν(B1) = 1. Then

νsx(B1 ∩ W s(x)) = 1 a.e., where νsx denotes the conditional measure on the

stable manifold W s(x). Arguing now in the same way as for (4.2) we obtain

(4.4) dim(B1 ∩W s(x)) ≥ δs(q) for ν-a.e. x.

To obtain the Hausdorff dimension on X , we use the Marstrand Slicing The-

orem [26], which we quote from [18]:

Lemma 4.2 (Marstrand Slicing Theorem): Let M1 and M2 be Riemannian

manifolds, A1 ⊂ M1, B ⊂ M1 ×M2. Denote by Ba the intersection of B with

{a}×M2 (the slice of B at an element a of A1) and assume that Ba is nonempty

for all a ∈ A1. Then

dim(B) ≥ dim(A1) + inf
a∈A1

dim(Ba).

Lifting the measure ν on Td to a Zd-invariant measure on Rd we obtain a

measure on the product of the stable and unstable subspaces for T on Rd.

We let M1 be the stable subspace (i.e., the sum of the contracted generalized

eigenspaces for T ) and let M2 be the unstable subspace. Take one point x ∈ X

that satisfies (4.4), and let A1 be the preimage of B1v ∩W s(x) on one coset of

the stable subspace in Rd. Applying the Marstrand Slicing Theorem with (4.2)

and (4.4) we obtain

(4.5) dim(D(S) ∩E(q)) ≥ δu(q) + δs(q).

Consequently, we have that

dim

(
D(S) ∩

⋃
q

E(q)

)
≥ dim(Wu) + dim(W s) = dim(X)

by applying (4.1) and (4.3), which proves the desired result.

4.1.2. Toral endomorphisms. The Ledrappier–Young formula is for homeomor-

phisms. There is, however, a generalization for endomorphisms, namely [28,

Theorem 2.7 and Proposition 2.5]. Applying this generalization to our endo-

morphism T and following the proof for automorphisms yields (4.1) and (4.2).

As q is arbitrary, the desired result follows.
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4.2. Proof of Corollary 1.2. As the automorphism group of Td equals

GL(d,Z), we see that the collection of maps appearing in the corollary is count-

able. Each map Sk in the collection of maps has a corresponding set D(Sk).

Theorem 3.2 implies that

ν

(⋂
k

D(Sk)

)
= 1.

Replacing D(S) with
⋂

k D(Sk) in Section 4.1 proves the desired result.

4.3. Proof of Theorem 1.4. There are three ingredients: Theorem 3.2, the

Ledrappier–Young formula, and a double application of the Marstrand Slicing

theorem. We recall the notation from Section 2.4. Summing the root spaces

for which |λ| > 1 for our fixed element corresponding to a1 yields h+, and

summing the root spaces for which |λ| < 1 for our fixed element yields h−.
These subalgebras correspond to unipotent subgroups, namely

H+ = exp(h+) and H− = exp(h−).

And xH+ (i.e., the orbit of x ∈ X under the right action of the subgroup H+)

is the leaf of the unstable manifold through x ∈ X ; likewise, xH− is the stable

manifold through x. Furthermore, the eigenspace h0 of the adjoint action of the

element a1 for the eigenvalue 1 is the Lie algebra of the subgroup CG(a1). As

the three Lie algebras are transversal the subgroups

H+, H−, and H0 = CG(a1)

can be used to define a local coordinate system in G. In fact, H−H+H0 ⊂ G

contains an open neighborhood of the identity of G.

We now argue just as in the proof for toral automorphisms in Section 4.1.

By the Ledrappier–Young formula we know that, for any measurable A with

ν(A) = 1, the dimensions of A ∩ xH+ and A ∩ xH− are close to dimH+ and

dimH− for ν-a.e. x. Similar to the torus case we wish to iterate this statement

together with the Marstrand Slicing Theorem. However, in order to obtain the

desired conclusion, we also have to consider the centralizer directions H0, which

we do so by using the following argument similar to that of [19, Section 1.5].

Let h ∈ H0 be arbitrary. As h commutes with a1 it is clear that the push-

forward νh of ν under multiplication by h on the right is a θ1-invariant probabil-

ity measure with the same entropy as for ν and is supported on E(q)h ⊂ ND(θ1).

Applying Theorem 3.2 to νh we obtain (νh)(D(θ2)) = 1. Equivalently we have

shown for every h ∈ H0 and ν-a.e. x that xh ∈ ND(θ1) ∩ D(θ2). Applying
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Fubini there exists a subset A1 of full ν-measure such that for all x ∈ A1 and

for a.e. h ∈ H0 (we use the Haar measure on H0) we have xh ∈ ND(θ1)∩D(θ2)

and, in particular,

dim(xH0 ∩ND(θ1) ∩D(θ2)) = dimH0.

By the same argument using the Ledrappier–Young formula as in the torus

case we obtain now that there exists a set A2 of full ν-measure such that

dim(yH+ ∩ A1) ≥ δu(q) for all y ∈ A2. Also by the same argument we find

a set A3 of full ν-measure such that dim(zH− ∩ A2) ≥ δs(q) for z ∈ A3.

Now choose and fix some z ∈ A3. Use the Marstrand Slicing Theorem with

M1 = H−, the set {h− ∈ H− | zh− ∈ A2}, and M2 = H+ to obtain

dim(zH−H+ ∩ A1) ≥ δs(q) + δu(q). Another application of the Marstrand

Slicing Theorem then gives

dim(ND(θ1) ∩D(θ2)) ≥ δs(q) + δu(q) + dim(H0).

As q is arbitrary, the theorem follows.

4.4. Proof of Corollary 1.5. The proof is analogous to the proof in Section

4.2.
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