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Abstract. We consider a hierarchy of notions of largeness for subsets of Z (such
as thick sets, syndetic sets, IP-sets, etc., as well as some new classes) and study
them in conjunction with recurrence in topological dynamics and ergodic theory. We
use topological dynamics and topological algebra in βZ to establish the connections
between various notions of largeness and apply the obtained results to the study of
sets of “fat intersections” Rε

A,B = {n ∈ Z : µ(A ∩ T nB) > µ(A)µ(B) − ε}. Among

other things we show that the sets Rε
A,B allow one to distinguish between various

notions of mixing and introduce an interesting class of weakly but not mildly mixing
systems. Some of our results on fat intersections are established in a more general
context of unitary Z-actions.

Introduction

Let (X,B, µ, T ) be an invertible ergodic probability measure preserving system.
Given ε > 0 and A,B ∈ B with µ(A) > 0, µ(B) > 0, let us define the set of “fat”
intersections by

Rε
A,B = {n ∈ Z : µ(A ∩ TnB) > µ(A)µ(B)− ε}.

When A = B, the sets Rε
A,B are intrinsically connected with the various enhance-

ments and applications of the classical Poincaré recurrence theorem and are rela-
tively well understood. For example, the Khintchine recurrence theorem ([Kh]; see
also [B1], Section 5) says that for any, not necessarily ergodic, probability measure
preserving system (X,B, µ, T ), any A with µ(A) > 0 and any ε > 0, the set Rε

A,A
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is syndetic (i.e., has bounded gaps). This result, in turn, follows from (a stronger)
fact that Rε

A,A is a 4∗-set, namely a set which has nontrivial intersections with
any set of the form {ni − nj}i>j , where (ni)i∈N is an injective sequence in Z (see
Theorem 3.1 below). Note that while every 4∗-set is syndetic, not every syndetic
set is a 4∗-set (consider for example the set of all odd numbers).

Assuming ergodicity, one can show that the sets Rε
A,B are always syndetic. On

the other hand, the natural question whether the sets Rε
A,B are always of the form

E + k, where E is a 4∗-set, k ∈ Z, has, in general, a negative answer (see Theorem
1.7 below). One of the goals of this paper to introduce and study some new notions
of largeness with the intention to better understand the sets of fat intersections and
to apply them to the study of mixing properties of dynamical systems.

In order to formulate our main results we have first to introduce and discuss the
pertinent notions of largeness. This is done in Section 1, at the end of which the
formulations of our main theorems are given. In Section 2 we take a closer look
at notions of largeness which are intrinsically related to topological dynamics. In
particular, we show that one of the notions playing the decisive role in this paper,
namely that of D-sets (see the definition in Section 1), can be naturally viewed as
the extension of Furstenberg’s notion of central sets (see [F], p. 161) which proved to
be very useful in various applications of Ergodic Theory to combinatorics. (See for
example [B1] and [B-M]). In Section 3 we provide the proofs of the characterizations
of ergodicity, weak, mild and strong mixing in terms of sets of fat intersections. In
Section 4 we give an example of a dynamical system which not only proves that
two of the classes under study (IP∗+ and D∗•) are not contained in one another,
but also that one cannot replace D∗• by its intersection with IP∗+ in the character-
ization of the weak mixing property. Finally, in Section 5 we apply our notions to
isolate certain nonempty subclass of weakly mixing but not mildly mixing transfor-
mations. The paper is concluded by an Appendix containing an explicit example of
a topological dynamical system with specific properties. Besides being interesting
in its own right, the existence of such a system is important in one of the proofs in
Section 2.

Acknowledgement. We are greatful to Sarah Bailey-Frick, Ronnie Pavlov and Neil
Hindman for useful comments. We also thank the anonymous referee for numerous
pertinent remarks and suggestions.

Section 1. Notions of largeness via duality

Let F be a family of nonempty subsets of the integers Z. By F∗ we will denote
the dual family consisting of all sets G such that G ∩ F 6= ∅ for every F ∈ F . The
family F is partition regular if, whenever F ∈ F is represented as a union of finitely
many sets, then at least one of them belongs to F . It is not hard to verify that if F
is partition regular then its dual F∗ is a filter: the intersection of two elements of
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F∗ belongs to F∗. (The other requirement for a filter, the property of being closed
under taking supersets, is obvious for F∗.) Two elementary examples of this kind
are as follows:
1. Fix some n0 ∈ Z and let F = {F ⊂ Z : n0 ∈ F}. Then F∗ = F .
2. Let F = I = {F ⊂ Z : |F | = ∞} (infinite sets). Then F∗ = I∗ = {F ⊂ Z :
|Z \ F | < ∞} (cofinite sets).

Let us now mention a more subtle example.
3. A set F ⊂ Z is called an IP-set if it contains the set FS(S) of finite sums of some

sequence of nonzero integers S = (sn)n≥1:

FS(S) = {sn1 + sn2 + · · ·+ snk
: n1 < n2 < · · · < nk, k ∈ N}.

Let IP be the family of all IP-sets. One can show that both IP-sets and IP∗-
sets (members of the dual family IP∗) can be characterized (with the help of
Hindman’s theorem) in terms of idempotents in βZ (see Definition 1.2 below and
Theorems 1.2 and 1.5 in [B2]).
Recall that a family of subsets of Z which is both partition regular and a filter

is called an ultrafilter (or a maximal filter). Note the obvious fact that the union
of any collection of ultrafilters is partition regular. Also, while an intersection of
ultrafilters need not be an ultrafilter, it is always a filter. The collection of all
ultrafilters is denoted by βZ and, endowed with an appropriate topology, becomes
the Stone-Čech compactification of Z. There is a natural semigroup structure in
βZ extending the addition operation of Z (for more details see [H-S]).

The above examples have interpretation in terms of ultrafilters, as follows: In
the first one, F is nothing but a so-called principal ultrafilter, i.e., the ultrafilter
representing n0 in βZ (and so is F∗). In the second, F is the union of all not
principal ultrafilters and F∗ is the intersection of all such ultrafilters. Finally, in
the third example F is the union of all not principal ultrafilters which are idem-
potents for the natural semigroup structure of βZ (that is, F is the union of all
idempotents except zero) and F∗ is the intersection of the nonzero idempotents (cf.
[B2, Theorem 2.15 (i), p.20]). The above facts are special cases of the following
more general statement:

Lemma 1.1.
(1) If F is an ultrafilter then F∗ = F .
(2) If F =

⋃
α Fα then F∗ =

⋂
α F∗α.

In particular, whenever F is a union of some collection of ultrafilters, then F∗ is
the intersection of the same collection of ultrafilters.

Intuitively, if we have a union of a rich collection of families, its dual contains
relatively few “very large” sets, namely, sets which intersect nontrivially every mem-
ber of every family in this collection. This approach to “largeness” will be utilized
throughout this paper: a set is “large” if it belongs to the dual of a rich family of
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sets containing a union of many ultrafilters. For this reason the first example above
is not very useful: the family F is just a single ultrafilter (so is F∗), moreover, F∗
contains finite sets, so being a member of F∗ cannot be considered a criterion for
largeness. But leaving this exceptional example aside, we will investigate a whole
hierarchy of notions of largeness constructed with the help of dual families, of which
the property of being a member of I∗ is the strongest. Several important notions
of largeness can be introduced with the help of idempotent ultrafilters.

In order to facilitate the discussion we list some of the important families of large
sets in the following definition. (Note that the family IP appearing in item (1)
below was already introduced above.)

Definition 1.2.
(1) The collection IP (of IP-sets) is the union of all nonzero idempotents 0 6= p ∈
βZ. Accordingly, IP∗ is the intersection of all nonzero idempotents.
(2) The collection D (of D-sets) is the union of all idempotents p ∈ βZ such that
every member of p has positive upper Banach density1. Accordingly, D∗ is the
intersection of all such idempotents.
(3) The collection C (of C-sets or central sets) is the union of all minimal idempo-
tents.2 Accordingly, C∗ is the intersection of all minimal idempotents.

Since every member of a minimal idempotent has positive upper Banach den-
sity3, we have C ⊂ D, hence, directly from the definitions, we obtain the following
hierarchy:

I∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ C ⊂ D ⊂ IP ⊂ I.

As we will see below all these inclusions are in fact proper.
We introduce two more notions of largeness defined via duality, as follows:

Definition 1.3.
(1) A subset F ⊂ Z is called a 4-set or we say that F belongs to the family ∆, if
there exists an injective sequence of integers S = (sn)n≥1 such that the difference
set 4(S) = {si − sj : i > j} is contained in F .
(2) A set F ⊂ Z is thick if it contains arbitrarily long intervals [a, b] = {a, a+1, a+
2, . . . , b}. The collection of all thick sets will be denoted by T . The dual family
T ∗ is easily seen to coincide with the collection of all syndetic sets (i.e., sets having
bounded gaps).

1Upper Banach density of a set E ⊂ Z is defined as lim sup(m−n)→∞
1

m−n
|E ∩ [n, m− 1]|. If

the corresponding limit exists then it is called the Banach density of E.
2An idempotent is minimal if it belongs to a minimal right ideal in βZ, see [H-S] and [B2]

for details. Also see the discussion in Section 2 on various equivalent definitions of the notion of
central set.

3This follows from a stronger fact that every member of a minimal idempotent is piecewise
syndetic, see [B2], Theorem 2.4 and Exercise 7.
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The family ∆ is a union of a collection of ultrafilters (see [B-H2, Definition 1.6
and Lemma 1.9]), while that of thick sets is not (because it is not partition regular).
It is known (and not very hard to see) that every thick set is an IP-set and that
every IP-set is a 4-set, but not the other way around. In particular, the collection
of ultrafilters whose union is ∆ contains more than just idempotents. The hierarchy
of notions of largeness introduced so far is as follows:

cofinite = I∗ ⊂ ∆∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ T ∗ = syndetic

Given a family F and k ∈ Z, the shifted family is defined by F+k = {F +k : F ∈
F}, where F + k = {n + k : n ∈ F}. The extreme classes in the above diagram are
shift invariant; a shifted cofinite set remains cofinite, a shifted syndetic set remains
syndetic. The other classes fail to be shift invariant. This is not surprising for
notions involving idempotents due to the simple fact that if p is an idempotent
then p + k is not (unless k = 0). To see that the family ∆∗ is not shift invariant
note that it contains the set of all even integers while it does not contain the set
of all odd integers. When F is not shift-invariant, there are two natural ways of
building a shift invariant family from it:

Definition 1.4. For a given family F , F+ denotes the union
⋃

k∈Z(F + k) while
F• denotes the intersection

⋂
k∈Z(F + k).

When applying these operations to a dual family F∗, we will write F∗+ and
F∗• , skipping the parentheses in what should formally be (F∗)+ and (F∗)•. Such
convention complies with the existing notation e.g. for IP∗+-sets. We will call F∗+
the extended dual family. Note that in general, F∗+ is not a dual family. On the
other hand, by Lemma 1.1 (2), the family F∗• is the dual of F+ (it could be written
as (F+)∗, but we will not use this confusing symbol). The elements of F∗• are
essentially larger than the members of F∗ as they must intersect every set in the
family F+ which is much richer than F . If F is a union of ultrafilters, so is F+,
thus F∗• is an intersection of ultrafilters, and in particular is a filter. It seems that
the type F∗• of shift invariant families has not been sufficiently recognized in the
existing literature. Here is the diagram including all dual and extended dual classes
related to the families discussed so far:

I∗• ⊂ ∆∗
• ⊂ IP∗• ⊂ D∗• ⊂ C∗• ⊂ T ∗•

|| ∩ ∩ ∩ ∩ ||
I∗ ⊂ ∆∗ ⊂ IP∗ ⊂ D∗ ⊂ C∗ ⊂ T ∗
|| ∩ ∩ ∩ ∩ ||
I∗+ ⊂ ∆∗

+ ⊂ IP∗+ ⊂ D∗+ ⊂ C∗+ ⊂ T ∗+

We will show now that in this diagram no inclusions hold except the ones that
are shown and those obtained by composition. First, observe the following property
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of all 4-sets F : certain distance between elements of F appears infinitely many
times. Indeed, in any difference set 4(S), with S = (sn) the distance |s2 − s1|
occurs between all pairs of elements sn − s1 and sn − s2 (n > 2). Obviously, the
same property holds for shifted4-sets. We conclude that the set of powers of 2 does
not contain any shift of any 4-set, which implies that the complement of powers of
2 is 4∗

•. Hence the family ∆∗
• is larger than the class of cofinite sets I∗. Further,

the set of all odd numbers is a 4∗
+-set and is not an IP-set, hence in the diagram it

escapes any class contained in C∗. Likewise, the set of all even integers is a 4∗-set
and not C∗•. The construction of an IP∗• but not 4∗

+ is provided in Theorem 2.11
(1). The existence of a D∗• not IP∗+-set will follow from Theorem 1.7 below. A C∗•
but not D∗+ example is our Theorem 2.11 (2). Finally, a syndetic set which is not
C∗+ is provided in [B2], Theorem 2.10. All other “unwanted” inclusions are now
eliminated by superposition.

It is worth noticing that the family C+ (shifted central sets) coincides with PS,
the family of piecewise syndetic or PS-sets (a set is piecewise syndetic if it is an
intersection of a thick set and a syndetic set). The proof can be found in [H-S,
Theorem 4.43 (c)]. Thus, C∗• = PS∗, the dual to the family of piecewise syndetic
sets. Elements of this dual can be easily identified as “syndetically thick”, meaning
that for every E ∈ PS∗ and n ≥ 1 intervals of length n appear in E with bounded
gaps (such sets have been introduced in [D] as S-sets).

This paper focuses on the role the notions of largeness of subsets of Z play
in ergodic theory and topological dynamics. Recall that (X,T ) is a (topological)
dynamical system if X is a compact Hausdorff space and T : X → X is a homeo-
morphism. The families defined as unions of certain idempotents (IP-sets, C-sets
and D-sets) have interpretations (and indeed convenient alternative definitions) as
families of sets of the form {n ∈ Z : (Tnx, Tny) ∈ U}, where y is a recurrent point,
the pair (x, y) is proximal4 and U is a neighborhood of (y, y) in X ×X.

While the families of IP-, C- and D-sets are useful in topological dynamics, their
dual and extended dual families find applications in ergodic theory. For example
we will show how notions of largeness such as D∗+, D∗• and IP∗• can be used to
characterize the familiar ergodic-theoretic notions of ergodicity, weak mixing and
mild mixing. As it was already mentioned in the Introduction, in this paper we
study the sets of fat intersections

Rε
A,B = {n ∈ Z : µ(A ∩ TnB) > µ(A)µ(B)− ε}.

In the spirit of Khintchine’s Theorem we will locate the sets of fat intersections for
specific types of systems in our diagram of “large sets”. First of all, the Khintchine

4Two points x, y in a topological dynamical system (X, T ) are proximal if the set of pairs
(T nx, T ny) has an accumulation point on the diagonal.
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theorem can be strengthened: the set Rε
A,A is always 4∗ (see Theorem 3.1). It

is not very surprising that the sets Rε
A,A do not form a shift invariant family.

However, to capture the fat intersections for two arbitrary sets A and B (this only
makes sense in ergodic systems) one needs a shift invariant notion simply because
Rε

A,T kB = Rε
A,B + k. The most natural candidate, namely the class ∆∗

+, turns
out to be too restrictive. The sets of fat intersections are in this class only for
certain rather special types of systems, e.g. systems with discrete spectrum. The
smallest class in our diagram that suffices for all ergodic systems is the extended
dual D∗+. However, curiously enough, we will show that for the notions of mixing
under study, the sets Rε

A,B are “captured” by the more restrictive shift invariant
dual of the form F∗• : for weak mixing this is D∗•, for mild mixing this is IP∗•, and
for mixing, directly by the definition, this is I∗ (which can be also written as I∗• ).

Let us briefly recall some of the ergodic-theoretic notions:

Definition 1.5.
(1) The system (X,B, µ, T ) has discrete spectrum if L2(µ) is spanned by the eigen-
functions of the unitary operator induced by T .
(2) The system (X,B, µ, T ) is weakly mixing if the product system (X × X,B ×
B, µ× µ, T × T ) is ergodic.
(3) The system (X,B, µ, T ) is mildly mixing if there are no nontrivial rigid L2-
functions. (A function f ∈ L2(µ) is rigid if Tnkf → f in L2 for some sequence
nk →∞.)
(4) The system (X,B, µ, T ) is mixing if for any two sets A, B ∈ B one has µ(A ∩
TnB) → µ(A)µ(B) as n →∞.

We stress that the appropriate categorization of fat intersections for all pairs of
sets is in many cases equivalent to a given ergodic-theoretic notion, which makes
the hierarchy of largeness very useful. In the following theorem we collect formu-
lations of various familiar notions of mixing in terms of sets Rε

A,B (see also Final
remarks at the end of the paper). Some of the items in Theorem 1.6 below are mere
reformulations of well known facts - see for example [F], others have relatively easy
proofs provided in Section 3 (see also Remark 1 below).

Given a system (X,B, µ, T ) we denote by R(X,B, µ, T ) the family of all sets of
fat intersections in this system, R(X,B, µ, T ) = {Rε

A,B : ε > 0, A, B ∈ B}.
Theorem 1.6. Let (X,B, µ, T ) be an invertible probability measure preserving sys-
tem. Then:
(1) For any A ∈ B and any ε > 0 we have Rε

A,A ∈ ∆∗.

(2) If (X,B, µ, T ) is ergodic and has discrete spectrum then R(X,B, µ, T ) ⊂ ∆∗
+.

(3) (X,B, µ, T ) is ergodic ⇐⇒ R(X,B, µ, T ) ⊂ D∗+ ⇐⇒ R(X,B, µ, T ) ⊂ C∗+ ⇐⇒
R(X,B, µ, T ) ⊂ T ∗.
(4) (X,B, µ, T ) is weakly mixing ⇐⇒ R(X,B, µ, T ) ⊂ D∗ ⇐⇒ R(X,B, µ, T ) ⊂
D∗• ⇐⇒ R(X,B, µ, T ) ⊂ C∗ ⇐⇒ R(X,B, µ, T ) ⊂ C∗• .
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(5) (X,B, µ, T ) is mildly mixing ⇐⇒ R(X,B, µ, T ) ⊂ IP∗ ⇐⇒ R(X,B, µ, T ) ⊂
IP∗• (c.f. Chapter 9, Section 4 in [F]).
(6) (X,B, µ, T ) is mixing ⇐⇒ R(X,B, µ, T ) ⊂ I∗ ⇐⇒ R(X,B, µ, T ) ⊂ ∆∗

⇐⇒ R(X,B, µ, T ) ⊂ ∆∗
• (see [K-Y] and Remark 1 (f) below).

Remark 1. Some of the equivalences in Theorem 1.6 are trivial or very easy, some
others follow from known results:
(a) It is clear that in (3) only the first equivalence needs a proof, the other two
follow from inclusions of the families of sets and from the fact that in nonergodic
systems the family R(X,B, µ, T ) contains the empty set, so R(X,B, µ, T ) 6⊂ T ∗.
(b) Since for any system (X,B, µ, T ) the family R(X,B, µ, T ) is shift invariant, it
is obvious that R(X,B, µ, T ) ⊂ F ⇐⇒ R(X,B, µ, T ) ⊂ F• for any family F .
(c) Notice that if R(X,B, µ, T ) ⊂ F , where F is a filter, then, intersecting each
set Rε

A,B with the corresponding set Rε
A,Bc , we obtain that the sets of accurate

intersections

Qε
A,B = {n ∈ Z : |µ(A ∩ TnB)− µ(A)µ(B)| < ε}

also belong to F . In other words, Q(X,B, µ, T ) = {Qε
A,B : ε > 0, A, B ∈ B} ⊂

F . (Clearly, since Qε
A,B ⊂ Rε

A,B , the converse implication also holds.) Thus the
statements (4),(5) and (6) in Theorem 1.6 are equivalent to analogous statements
with R(X,B, µ, T ) replaced by Q(X,B, µ, T ).
(d) If the system (X,B, µ, T ) is not weakly mixing then one can find two sets A and
B and an ε > 0 such that the sets Rε

A,A and Rε
A,B are disjoint (c.f. Theorem 4.31

in [F]), and so they cannot both be C∗-sets. Thus the condition R(X,B, µ, T ) ⊂ C∗
implies weak mixing.5 Hence, using the remark (b) and obvious inclusions, we
conclude that also in (4) only the first equivalence needs a proof. In fact, the first
implication =⇒ can be deduced (using (c)) from the classical fact that weak
mixing is equivalent to the condition

lim
n→∞

1
n

n−1∑

i=0

|µ(A ∩ T iB)− µ(A)µ(B)| = 0

for any sets A, B ∈ B.
(e) The first equivalence in (5) (in terms of accurate intersections) is Proposition
9.22 [F], the second follows from (b).
(f) The first equivalence in (6) applied to accurate intersections becomes merely
the definition of mixing. The second equivalence in (6) (formulated for accurate

5The same fact is proved (by a different method) in [K-Y] Proposition 5.2, in response to the
question formulated in the preliminary version of this paper.
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intersections) is nontrivial and has been recently proved in [K-Y] Theorem 4.4 (see
also [K-Y] Proposition 5.1, formulated in response to the question in the preliminary
version of our paper).

To summarize the content of the above remark, only (1), (2) and portions of
(3) and (4) require proofs (see Theorems 3.1, 3.2, 3.8 and 3.9 in the next section,
respectively). For completeness we will also provide a proof of (5) using the language
of idempotents (see Theorem 3.10).

The following two results (which are proved in Sections 4 and 5) isolate a new
class of systems defined in terms of fat intersections and situated strictly between
weak and mild mixing. A priori it could happen that for weakly mixing systems the
sets Rε

A,B always belong to the intersection of IP∗+ and D∗•. The following theorem
shows that this is not always so. (It also provides a proof that the family D∗• \IP∗+
is nonempty).

Theorem 1.7. There exists a weakly mixing probability measure preserving system
(X,B, µ, T ), sets A,B ∈ B and ε > 0 such that the set Rε

A,B is not IP∗+.

On the other hand, the requirement that all sets Rε
A,B are IP∗+ is insufficient for

mild mixing (in particular D∗• ∩ IP∗+ \ IP∗ is nonempty):

Theorem 1.8. There exists a weakly mixing but not mildly mixing probability mea-
sure preserving system (X,B, µ, T ), such that all the sets Rε

A,B are IP∗+ (but not all
of them are IP∗).

Questions.
(a) Does there exist a mildly mixing system for which not all sets Rε

A,B belong to
∆∗

+ (c.f. Theorem 2.11 (1)).
(b) Does there exist a mildly mixing not mixing system for which all sets Rε

A,B

belong to ∆∗
+? (Here we do not even know whether IP∗• ∩∆∗

+ \∆∗ is nonempty.)
(c) More generally, what is the dynamical condition equivalent to R(X,B, µ, T ) ⊂
∆∗

+?

The following figure gives an overview of the classes of systems under study
and inclusions between them. The symbol R(F) stands for the class of systems
(X,B, µ, T ) such that R(X,B, µ, T ) ⊂ F .
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Section 2. IP-sets, central sets and D-sets in topological dynamics

Recall that βZ is the Stone-Čech compactification of Z consisting of ultrafilters,
which has a natural semigroup structure. On βZ there is also the natural action τ
which extends the map n 7→ n + 1 on Z.

If p ∈ βZ is ultrafilter then the p-limit of a sequence xn of elements of a compact
space is defined by the rule

p-lim xn = x ⇐⇒ (∀ open U 3 x) {n ∈ Z : xn ∈ U} ∈ p.

The following fact will be used repeatedly in our paper: if p is an idempotent
and T is a continuous selfmap of a compact space then p-limTnx = y implies
p-limTny = y (see Proposition 3.2 in [B2]).

Every transitive topological dynamical system (X,T ) (with a transitive point x0)
is a topological factor of (βZ, τ) via the map p 7→ p-lim Tn(x0) (see e.g. Proposition
7.3 in [E]).

The orbit closure of a point x in a topological dynamical system (X, T ) is the set
O(x) = {Tnx : n ∈ Z}. A point x in (X, T ) is recurrent if for every neighborhood
Ux 3 x there exists n 6= 0 such that Tnx ∈ Ux.

It is known ([F], Theorem 2.17) that the set F of return times of a recurrent
point x, F = {n ∈ Z : Tnx ∈ Ux}, is an IP-set. We also have

Theorem 2.1. A set E ⊂ Z is IP if and only if there exist a compact metrizable
dynamical system (X, T ), a pair of points x, y ∈ X such that y is recurrent and (y, y)
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belongs to the orbit closure of (x, y) in the product system (X ×X,T × T ), and an
open neighborhood U(y,y) of (y, y) such that E = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.
Remark 2. Note that if (y, y) belongs to the orbit closure of (x, y) then x and y are
proximal. In general, the conditions that y is recurrent and x is proximal to y do
not imply (y, y) ∈ O(x, y). For example, x can be a fixpoint in the orbit closure of
a recurrent point y 6= x. In order that (y, y) ∈ O(x, y) the recurrence of y and the
proximality of x and y must be realized along a common sequence of times.

Proof of Theorem 2.1. Let y and x be such that y is a recurrent point in X with
(y, y) ∈ O(x, y) and let U(y,y) be an open neighborhood of (y, y). Consider the set
E′ = {n ∈ Z : (Tnx, Tny) ∈ Uy × Uy}, where Uy × Uy is a product neighborhood
of (y, y) contained in U(y,y). It is clear that the set E′ is infinite, so it contains
some s 6= 0. Suppose E′ contains FS(S), where S is some finite set not containing
zero. Let Vy ⊂ Uy be an open neighborhood of y such that T s(Vy) ⊂ Uy for
all s ∈ S. We can find 0 6= s′ /∈ S for which (T s′x, T s′y) ∈ Vy × Vy. Then
(T s′x, T s′y) ∈ Uy × Uy and (T s′+sx, T s′+sy) ∈ Uy × Uy for every s ∈ S. We have
shown that E′ ⊃ FS(S′), where S′ = S ∪ {s′}. By induction, we will obtain a
set FS(S) (where S is infinite) contained in E′, which proves that E′ (as well as
E) is an IP-set. To prove the converse, consider an arbitrary IP-set E and let
x = (x(n))n∈Z be the characteristic function of E viewed as an element of the
shift system X = {0, 1}Z. Define y = p-limTnx, where p is an idempotent such
that E ∈ p (see Definition 1.2(1)). Following the proof of Theorem 3.6 in [B2], we
claim that the sequence y starts with the symbol 1: y(0) = 1. By the definition of
p-lim , the set R = {n ∈ Z : (Tnx)(0) = y(0)} belongs to p. So, the intersection
R ∩ E is nonempty (it belongs to p), which implies that there exists n ∈ E with
x(n) = y(0). But x(n) = 1 if and only if n ∈ E, so y(0) = 1. This implies that
E = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where U(y,y) is defined as U1 ×X, where U1 is
the cylinder of elements starting with 1. ¤

We will now introduce C-sets and D-sets in a similar way, by imposing additional
conditions on the recurrence of y.

A point y contained in a dynamical system (X,T ) is uniformly recurrent if, for
any neighborhood U of y, the set of return times {n ∈ Z : Tny ∈ U} is syndetic. It
is well known that y is uniformly recurrent if and only if the orbit closure O(y) of
y is minimal.

Central sets have been defined by H. Furstenberg ([F, Def. 8.3]) as follows:

Definition 2.2. A set C ⊂ Z is central if there exists a compact metrizable dy-
namical system (X,T ), a point x ∈ X proximal to a uniformly recurrent point
y ∈ X and an open neighborhood Uy of y such that

C = {n ∈ Z : Tnx ∈ Uy}.
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One can show that C is central if and only if C is a member of a minimal
idempotent in βZ (see [B-H1] Corollary 6.12 and [B2], Theorem 3.6). We have
already used this equivalent form of definition of central in Section 1, Definition
1.2.

Central sets can also be characterized with the help of product systems, as
follows.

Theorem 2.3. A set C ⊂ Z is central if and only if there exist a compact metrizable
dynamical system (X, T ), a pair of points x, y ∈ X where y is uniformly recurrent,
and such that (y, y) belongs to the orbit closure of (x, y) in the product system
(X ×X, T × T ), and an open neighborhood U(y,y) of (y, y) such that

C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.

Proof. As we have mentioned in Remark 2, even if y is recurrent and x is proximal
to y, (y, y) does not have to belong to the orbit closure of (x, y). Nevertheless,
it is easy to see that if y is uniformly recurrent then proximality of x and y does
imply that (y, y) belongs to the orbit closure of (x, y). This observation is crucial
in the proof. Let C be central, and let x and y be as in Definition 2.2. Then (y, y)
belongs to the orbit closure of (x, y), and C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)},
where U(y,y) = Uy × X. Conversely, if C = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)} with
assumptions on x and y as in the formulation of the theorem, then C is central
directly by Definition 2.2, using (x, y) and (y, y) as a pair of points in the direct
product (X ×X, T × T ). Notice that (y, y) is uniformly recurrent in the product
system. ¤

Now we focus on D-sets. In the Introduction we have defined them analogously
to C-sets by replacing minimal idempotents by a wider class of idempotents all
of whose members have positive upper Banach density, so that the class D of D-
sets is (strictly) intermediate between IP and C. We are interested in obtaining
a characterization of D-sets, analogous to that of IP-sets and C-sets (in terms of
visits of (Tnx, Tny) to U(y,y)) by imposing on y an appropriate type of recurrence
condition, as defined below.

Definition 2.4. A point y contained in a (not necessarily metrizable) dynamical
system (X, T ) is essentially recurrent if the set of visits {n ∈ Z : Tny ∈ Uy} for any
neighborhood Uy of y has positive upper Banach density.

Obviously, since every syndetic set has positive upper Banach density, every
uniformly recurrent point is essentially recurrent. A characterization of essentially
recurrent points in terms of the properties of their orbit closures is provided below.
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Definition 2.5. A dynamical system (Y, T ) will be called measure saturated if the
union of the topological supports of all invariant probability measures6 carried by
Y is dense in Y . In other words for every nonempty open set U there exists an
invariant measure µ such that µ(U) > 0.

Note that every minimal system is measure saturated.

Theorem 2.6. A point y is essentially recurrent if and only if the orbit closure
O(y) is measure saturated.

Proof. First let us show that if a point y is essentially recurrent then its orbit closure
is measure saturated. Let Uy 3 y be an open set and let U 3 y be open and such that
U ⊂ Uy. Since y is essentially recurrent, the set A = {n ∈ Z : Tny ∈ U} has positive
upper Banach density d. Let In be a sequence of intervals in Z, with |In| → ∞ (as
n → ∞) such that the ratios |A∩In|

|In| converge to d. Let µn (n = 1, 2, . . . ) be the
normalized counting measures supported by the sets {T iy : i ∈ In}, and let µ be a
weak∗ accumulation point7 of µn. Clearly, µ is T -invariant, supported by O(y) and
satisfies µ(U) > 0, and thus µ(Uy) > 0. We have proved that the closure M of the
union of supports of all invariant measures carried by O(y) contains y. Since M is
a closed invariant set, it follows that M = O(y), i.e., O(y) is measure saturated.

Conversely, assume that O(y) is measure saturated. Let Uy 3 y be an open set.
Then there exist an invariant measure µ supported by O(y) such that µ(Uy) > 0.
The ergodic theorem assures that the function

f(x) = lim
n→∞

1
n

n∑

i=1

1Uy (T i(x))

satisfies
∫

f dµ = µ(Uy) > 0. Thus there exists y′ ∈ O(y) with f(y′) = d > 0. In
other words, the set R = {n ∈ Z : Tny′ ∈ Uy} has natural density d, i.e., satisfies
limn

|R∩[1,n]|
n = d. Note now that for any m ∈ N there exists n ∈ Z such that for

any i ∈ [0,m], Tn+i(y) ∈ Uy if and only if T i(y′) ∈ Uy. It follows that the set
{n ∈ Z : Tny ∈ Uy} has positive upper Banach density (at least d) and hence y is
essentially recurrent. ¤
Definition 2.7. Let p be an idempotent in βZ. We will call p essential if every
member of p has positive upper Banach density.

We are in a position to provide a dynamical definition of D-sets, which is com-
pletely analogous to the characterizations of IP-stes and central sets.

6The classical Bogoliubov-Krylov Theorem guarantees the existence of at least one invariant
probability measure. The topological support of a probability measure is the smallest closed set
of measure 1.

7A sequence of measures µn converges to µ weakly∗ if
R

f dµn →
R

f dµ for every continuous
function f on the space Y .
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Theorem 2.8. A set D ⊂ Z is a D-set if and only there exists a compact metrizable
dynamical system (X,T ), points x, y ∈ X with y essentially recurrent, for which
the orbit closure of (x, y) in the product system (X×X, T ×T ) contains (y, y), and
an open neighborhood U(y,y) of (y, y) such that

D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}.

Before we prove the theorem we need a series of lemmas.

Lemma 2.9. An idempotent q ∈ βZ is an essentially recurrent point in (βZ, τ) if
and only it is essential.

Remark 3. Glasner [G] introduces a set Z in βZ defined as the closure of supports
of all invariant measures on βZ and he proves that it is a so-called kernel for the
family of sets of positive upper Banach density. In fact one implication of the above
lemma could be deduced from that result, but we choose to give an independent
proof.

Proof of Lemma 2.9. Let q be essentially recurrent and let E be any element of q.
The closure E of E in βZ can be interpreted as a neighborhood of q. There exists
an invariant measure µ such that µ(E) > 0. Since µ is supported by the orbit
closure of 0, the set of visits of 0 to this neighborhood (which is E) has positive
upper Banach density (the same argument as in the proof of Theorem 2.6 applies).
The converse is also true. The map p 7→ p + q is a factor map from βZ onto O(q)
and both 0 and q map to q. A neighborhood Uq of q in O(q) lifts to a neighborhood
Vq of q in βZ and the set Rq of times of visits of q in Uq contains the set R0 of the
times of visits of 0 in Vq. But the set R0 is a member of q (because its complement
is not). Since q is assumed to be an essential idempotent, all members of q have
positive upper Banach density (see Definition 2.7.). It follows that R0 has positive
upper Banach density and hence, by Definition 2.4, q is essentially recurrent. ¤

It is obvious that if π : X 7→ Y is a topological factor map and y ∈ Y is uniformly
recurrent then there exists a uniformly recurrent π-lift x ∈ X of y (because the
preimage of O(y) is invariant and any one of its minimal subsets must map onto
O(y)). The lemma below is an analogous statement for essentially recurrent points.

Lemma 2.10. Let π : X → Y be a topological factor map (surjection) between
dynamical systems (X, S) and (Y, T ). If y is an essentially recurrent point in Y
then there exists an essentially recurrent π-lift x of y. Moreover, we can find such x
for which O(x) contains no proper closed invariant subset mapping by π onto O(y).

Proof. Applying Zorn’s Lemma to the family of all lifts of O(y), i.e., of closed
invariant sets mapping by π onto O(y), we can find a minimal such lift X0 ⊂ X.
Let x be any lift of y contained in X0. Since O(x) ⊂ X0 and it maps onto O(y), by
minimality O(x) = X0. On the other hand, since every invariant measure carried
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by O(y) lifts to at least one invariant measure carried by O(x), the closure X1

of the union of the supports of all invariant measures carried by O(x) maps onto
a closed set containing the union of supports of all invariant measures carried by
O(y). Since y was assumed essentially recurrent, X1 maps onto O(y) and hence, as
a closed invariant subset of X0 it also equals X0. This proves that x is essentially
recurrent, and that its orbit closure is a minimal lift of O(y), as required. ¤
Proof of Theorem 2.8. Let D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where x and y are
as in the formulation of the theorem. Consider a factor map π : βZ → O(x, y)
defined by p → π(p) := p-lim (Tnx, Tny). By assumption, O(y, y) ⊂ O(x, y). Since
O(y, y) is contained in the diagonal, it is topologically conjugate to O(y) and hence
(y, y) is essentially recurrent. By Lemma 2.10, we can find in βZ an essentially
recurrent π-lift p1 of (y, y) whose orbit closure is a minimal lift of O(y, y). We will
show that p1 can be replaced by an idempotent. Consider the set

I = {p ∈ O(p1) : π(p) = (y, y)}.

By an elementary verification, I is a closed semigroup of βZ, so it contains an
idempotent q. Since q maps to (y, y), its orbit closure maps onto O(y, y). By
minimality of the lift O(p1), q has the same orbit closure as p1, and hence is
essentially recurrent.

Finally, D ∈ q follows from the two facts: 1) (Tnx, Tny) does not belong to the
neighborhood U(y,y) of (y, y) for all n ∈ Dc. 2) q-lim (Tnx, Tny) = (y, y). This
implies Dc /∈ q, so that D must belong to q. We have completed the proof of one
implication.

We now proceed to prove the converse implication of the theorem. Let D be a
D-set (i.e., a member of an essentially recurrent idempotent). Identify the char-
acteristic function of D with a point x in {0, 1}Z and denote the action of the
shift transformation by T . Define y = q(x) := q-lim Tnx. Since q is an idempotent,
q(y) = y, so q(x, y) = (y, y), i.e., the orbit of (x, y) accumulates at (y, y), as required.
in the theorem. Now we repeat the argument used in the proof of Theorem 2.1:
The set R = {n ∈ Z : (Tnx)(0) = y(0)} belongs to q, so R∩D 6= ∅. Since x(n) = 1
for n ∈ D, y(0) = 1. As a consequence, D = {n ∈ Z : (Tnx, Tny) ∈ U(y,y)}, where
U(y,y) = U1 ×X, where U1 denotes the cylinder of elements starting with 1 and X
denotes the full shift space. The last thing we need is to verify that y is essentially
recurrent. But this is immediate, because y is the image of q via the factor map
π : βZ→ O(x) given by p 7→ p(x), and it is elementary to see that any factor map
preserves essentially recurrent points. ¤
Remark 4. Note that if y is an essentially recurrent point in the orbit closure of
x and x, y are proximal, then the set {n ∈ Z : Tnx ∈ Uy} need not be a D-
set. For example, let y = (y(n)) be a forward transitive point in the full shift
on three symbols 0,1,2 (such y is essentially recurrent) with y(0) = 0 and let
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x be as follows: x(n) = 1 whenever y(n) = 1 (this makes x and y proximal),
x[m,n] = y[0, n − m] if y[m,n] = 222 . . .2 and y(m − 1) 6= 2 (then x is forward
transitive, hence its orbit closure contains y), and x(n) = 2 whenever y(n) = 0.
Then the set {n ∈ Z : Tnx ∈ Uy} is not even an IP-set: If p-limTn(x) = y then
p-limTn(y) 6= y (p-limTn(y) has the symbol 2 at zero coordinate), and hence p is
not an idempotent.

We will now focus on the dual families, more precisely, on proving the “non-
containment” claims formulated in the introduction below the main diagram.

Theorem 2.11.
1. There exists an IP∗• set which is not 4∗

+.
2. There exists a C∗•-set which is not D∗+.

Proof. A set of integers enumerated increasingly as (an) (over n ∈ Z or n ∈ N)
is said to have progressive gaps if it contains a subsequence ank

(we will call each
finite subset {ank+1, ank+2, . . . , ank+1} a chunk) such that for nk +1 < i ≤ nk+1 one
has ai − ai−1 > ank+1 − ai (inside each chunk every gap is larger than the distance
to the right end of the chunk) and ank+1− ank

→∞ (the gaps between the chunks
tend to infinity). A structure of a set with progressive gaps is shown below:

.... • .. • •................... • ... • . • ............................................

chunk︷ ︸︸ ︷•.............. • ... • •....
an1 an2 an3

A typical example of a set with progressive gaps is the difference set 4(S) for a
rapidly (for example exponentially) increasing sequence S.

It is not hard to see that in such a set, for any fixed d, the set of elements ai,
such that there exists j > i with aj − ai = d, is either finite or its gaps tend to
infinity (because the distance d can eventually occur only inside the chunks and
then only once in every chunk).

Notice the following property of all IP-sets F : a certain distance d between
elements of F appears along an IP-set. Indeed, if F contains the set of finite sums
FS(S) with S = (sn) then the distance |s1| occurs between all pairs b and s1 + b
for every b ∈ FS(A′), where A′ = (sn)n≥2. Clearly, analogous statement holds for
shifted IP-sets: certain distance d occurs along a shifted IP-set. In particular, the
gaps between pairs with distance d do not tend to infinity. We conclude that a set
with progressive gaps does not contain any shifted IP-set.

Let (rk)k≥1 be a sequence containing all integers. Using the above observation
we will now describe how to construct a set E as a union over all integers k of
shifted by rk 4-sets Ek such that E has progressive gaps, hence contains no shifted
IP-sets. Clearly, the complement of such a set E is IP∗• and not 4∗

+. Begin with
the difference set of a rapidly growing sequence, so that it has progressive gaps.
Let E1 be this difference set shifted by r1. Inductively, suppose a union of k
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shifted (by r1, . . . , rk) difference sets makes a set Ek with progressive gaps. We
will now create a new difference set 4(S) with progressive gaps, whose chunks
“fit into the large gaps” of Ek − rk+1, in such a way that Ek+1 defined as Ek ∪
(4(S) + rk+1) maintains progressive gaps. Let s1 = 1. Suppose we have defined
s1, . . . , sn ∈ S. This determines a part of 4(S) and the “shape” of the next chunk
{sn+1−sn, . . . , sn+1−s1}. The next element sn+1 of S determines only the shifting
of this new chunk. By an appropriate choice of sn+1 we can position this chunk
in the central part of some very large gap between the chunks of Ek − rk+1. In
the union (Ek − rk+1) ∪4(S) this gap splits into two gaps about half the original
size with a new chunk in the middle. Similarly we choose sn+2, and on, until
the whole sequence S is defined. It is clear that (Ek − rk+1) ∪ 4(S) (and hence
Ek ∪ (4(S) + rk+1)) maintains progressive gaps. We can pass to step k + 2 and
further steps. If in each step k we split only gaps larger than some increasing (with
k) threshold value, the set E =

⋃
k Ek will maintain progressive gaps, and it is a

union of shifted 4-sets, as needed to complete the proof of the statement (1).

We now describe the construction of a C∗• sets which is not D∗+. The idea is the
same as in the preceding argument, except that we will use different properties of
sets. Suppose there exists a non-piecewise syndetic set E such that E +k is a D-set
for each k ∈ Z. Such E contains no shifted C-sets (recall that C+ = PS). Thus the
complement of E is a C∗•-set, and since every shift of E misses a D-set, it is not a
D∗+-set.

It remains to construct such non-piecewise syndetic set E. Consider a topo-
logically weakly mixing8 and measure saturated system (X, T ) with the property
that the closure of the union of all minimal sets is smaller than X. An explicit
construction of such an example is provided in the Appendix (the example is in
fact topologically mixing, with an invariant measure having full support, and with
a fixpoint as the unique minimal set). Let U be an open set disjoint from another
open set V containing the union of all minimal sets. Notice that the orbit closure
of y is conjugate to that of (y, y) in the product system. If y is a transitive point
then it is essentially recurrent, and so is (y, y). There exists a pair (x, y) transi-
tive in X × X with both x and y contained in U . Then, for any integer k, the
pair (T kx, y) is also transitive, hence its orbit closure contains (y, y). Thus the set
{n−k : Tnx ∈ U} is a D-set (write it as {j : (T jT kx, T jy) ∈ U ×X}). This implies
that any shift of the set E = {n ∈ Z : Tnx ∈ U} is a D-set, as required. This set E
is not piecewise syndetic; if it was we could easily construct a uniformly recurrent
point in the closure of U , which is impossible, since all such points are in V . ¤

8A topological dynamical system (X, T ) is said to be topologically weakly mixing (mixing) if
for any nonempty open sets A, B ⊂ X the set {n ∈ Z : T nA ∩B 6= ∅} is thick (cofinite).
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Section 3. Applications of the dual families
to unitary and measure preserving actions.

This section contains proofs of the nontrivial implications in Theorem 1.6. We
begin with the role of the 4∗ and 4∗

+-sets.

Theorem 3.1. (see Theorem 1.6 (1)). In every measure-preserving system the set
Rε

A,A of fat intersections for one set A is 4∗.

Proof. (cf. [B1], p. 49; see also [K-Y] Proposition 4.1) First observe that if An

is any sequence of sets of equal measures α in a probability space, then for every
ε > 0, the inequality µ(Ai ∩ Aj) > α2 − ε holds for at least one pair of indices
i < j. Indeed, suppose the contrary and consider the function

∑n
i=1 1Ai . Its inner

product with 1 equals nα, while the square of its L2-norm is easily seen to be at
most n2(α2 − ε) + n. For large n this contradicts the Cauchy-Schwarz inequality.

Once this is established, take any injective sequence S = (sn) and let An = T snA.
Then µ2(A)− ε < µ(T siA ∩ T sj A) = µ(A ∩ T sj−siA) holds for at least one pair of
indices i < j, proving that Rε

A,A intersects 4(S). ¤

Remark 4. We remark that the above proof actually shows that Rε
A,A has nonempty

intersection with every large enough finite difference set.

Theorem 3.2. (see Theorem 1.6 (2)). Let (X,B, µ, T ) be an ergodic rotation of a
compact abelian group (where µ is the Haar measure). Then, for any A,B ∈ B and
ε > 0 the set Rε

A,B is 4∗
+.

Proof. The proof is based on a simple observation, that for group rotations Khint-
chine’s theorem takes on a stronger form. Namely, if (X,B, µ, T ) is a (not neces-
sarily ergodic) compact abelian group rotation, then for any C ∈ B and ε > 0, one
actually has that the set

Rε
C = {n ∈ Z : µ(C ∩ T−nC) ≥ µ(C)− ε}

is 4∗ (note that in the displayed formula we have µ(C) rather than µ(C)2). For,
let 4(S) = {si − sj} where S = (si). Finding a subsequence sik

→ ∞ such that
T sik (e) converges we obtain a uniformly convergent sequence of maps T sik . Thus
T sik

−sil converge to identity uniformly (hence strongly in L1(µ)), which implies
that µ(C ∩ TnC) ≥ µ(C)− ε for some n of the form sik

− sil
, (belonging to 4(S)).

Returning to the ergodic case and two sets A,B ∈ B, let us first find (by ergodicity)
an integer n0 such that µ(A∩T−n0B) > µ(A)µ(B)− ε

2 . Denoting C = A∩T−n0B

one easily obtains that Rε
A,B ⊃ R

ε
2
C + n0, which implies the assertion. ¤

We will discuss now the connections between essential idempotents and unitary
actions. Consider a unitary operator U on a separable Hilbert space H. We will
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use the orthogonal decomposition H = Hc ⊕Hwm, where

Hc =
{

x ∈ H : {Unx}n∈Z is compact in the norm topology
}

,

Hwm =

{
x ∈ H :

1
N

N−1∑
n=0

|〈Unx, x〉| → 0

}

(see [Kr], Section 2.4 and [B2], Theorem 4.5). Recall that in a Hilbert space the
norm convergence lim xn = y is equivalent to the conjunction of the weak conver-
gence of xn to y and the convergence of norms lim ‖xn‖ = ‖y‖. Since any unitary
operator U is an isometry, the relation p-lim Unx = x for some p ∈ βZ holds in the
weak topology if and only if it holds in the strong topology.

Lemma 3.3. If p ∈ βZ is an idempotent then for any x ∈ Hc one has p-limUnx =
x.

Proof. By definition of Hc, U acts on the compact metric space {Unx}n∈Z where
it is distal (it is actually an isometry). In distal systems one has p-limUnx = x
for any idempotent (if p-lim Unx = y for an idempotent p then also p-limUny = y
hence x and y are proximal, and so, by distality, x = y). ¤

The above statement can be reversed for essential idempotents:

Lemma 3.4. If p ∈ βZ is an essential idempotent and p-limUnx = x for some
x ∈ H then x ∈ Hc.

Proof. For ε > 0 consider the set E = {n ∈ Z : ‖Unx − x‖ < ε
2}. Clearly E ∈ p.

Note that for any n1, n2 ∈ E one has

‖Tn1−n2x− x‖ = ‖Tn1x− Tn2x‖ ≤ ‖Tn1x− x‖+ ‖Tn2x− x‖ < ε.

Since E ∈ p, it has positive upper Banach density, which implies that E − E is
syndetic (see [F], Prop. 3.19(a) or [B1] p. 8), i.e., finitely many shifted copies of
E − E cover Z. This in turn implies that finitely many preimages of the ε-ball
around x cover the orbit of x. Since U is an isometry we have covered the orbit by
finitely many ε-balls, hence the orbit of x is precompact, i.e., x ∈ Hc. ¤
Lemma 3.5. If p ∈ βZ is an essential idempotent then for any x ∈ Hwm one has
p-limUnx = 0 weakly.

Proof. By compactness of the ball of radius ‖x‖ around zero in the weak topology,
there exists some y such that p-lim Unx = y weakly. Since Hwm is invariant and
closed, y ∈ Hwm. On the other hand, p is an idempotent, so p-lim Uny = y. By
Lemma 3.4, y ∈ Hc. This implies y = 0. ¤

Recall that a unitary operator U acting on a Hilbert space H is called weakly
mixing if it has no non-trivial eigenvectors. One can show that U is weakly mixing
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if and only if in the decomposition H = Hc ⊕ Hwm one has Hc = {0} (see [Kr],
Thms 3.4 and 4.4). Let now (X,B, µ, T ) be an invertible weakly mixing system.
It is not too hard to check that in this case the unitary operator induced by T on
L2(µ) is weakly mixing in the above sense on the orthocomplement of the space of
constant functions. This leads to the following corollary of Lemmas 3.4 and 3.5:

Corollary 3.6. An invertible probability measure-preserving system (X,B, µ, T ) is
weakly mixing if and only if for every f ∈ L2(X) and any essential idempotent
p ∈ βZ,

p-lim Tnf =
∫

f dµ (in the weak topology).

Equivalently, (X,B, µ, T ) is weakly mixing if and only if for any A, B ∈ B and any
essentially recurrent idempotent p, p-limµ(A ∩ TnB) = µ(A)µ(B).

We now turn our attention to the D∗-sets. It was proved in [B2], Theorem 4.4
that a unitary operator U acting on a Hilbert space H is weakly mixing if and only
if for any ε > 0 and any pair x, y ∈ H the set Rε

x,y = {n ∈ Z : 〈Unx, y〉 > −ε}
is C∗. We will show that a slight modification of this proof provides a somewhat
stronger result.

Theorem 3.7. A unitary operator U acting on a Hilbert space H is weakly mixing
if and only if for any ε > 0 and any pair x, y ∈ H the set Rε

x,y is D∗.

Proof. If U is weakly mixing then Hc = {0} and the result follows from Lemma 3.5.
Assume now that for any ε and x, y ∈ H the set Rε

x,y is D∗. If U is not weakly
mixing then there exists x ∈ Hc, x 6= 0. By Lemma 3.3 one has p-lim Unx = x
for any essential idempotent p. One has then p-lim 〈Unx, x〉 = ‖x‖2, which implies
that for small enough ε > 0 the set Rε

x,−x is not D∗. ¤

We can now continue with proving the statements of Theorem 1.6:

Theorem 3.8. (see Theorem 1.6 (3)). An invertible probability measure-preserving
system (X,B, µ, T ) is ergodic if and only if for any A,B ∈ B and ε > 0 the set Rε

A,B

belongs to D∗+.

Proof. (cf. [B2], Theorem 4.11) Assume that (X,B, µ, T ) is ergodic. Denote f = 1A

and g = 1B . Decompose g = g1+g2, g1 ∈ Hc, g2 ∈ Hwm. Note that
∫

g1 dµ = µ(B).
By the von Neumann Ergodic Theorem,

1
N

N−1∑
n=0

∫
f(Tnx)g1(x) dµ(x) →

∫
f dµ

∫
g1 dµ = µ(A)µ(B),
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hence there exists n0 satisfying
∫

f(Tn0x)g1(x) dµ(x) > µ(A)µ(B)− ε. Let p be an
essential idempotent. Applying our Lemmas 3.3 and 3.5, we can write

p-lim µ(Tn0A ∩ TnB) = p-lim
∫

f(Tn0x)g(Tnx) dµ(x) =

p-lim
∫

f(Tn0x)g1(Tnx) dµ(x) + p-lim
∫

f(Tn0x)g2(Tnx) dµ(x) =
∫

f(Tn0x)g1(x) dµ(x) + 0 > µ(A)µ(B)− ε.

This implies that Rε
A,B − n0 ∈ p, which proves that Rε

A,B is D∗+.
The converse implication is obvious: if the sets Rε

A,B are D∗+ then they are
nonempty which implies ergodicity. ¤

Theorem 3.9. (see Theorem 1.6 (4)) The system (X,B, µ, T ) is weakly mixing if
and only if for any A,B ∈ B and ε > 0 the set Rε

A,B is D∗. Morover, if (X,B, µ, T )
is weakly mixing then Rε

A,B has Banach density one.

Proof. Assume that (X,B, µ, T ) is weakly mixing. Then, by Corollary 3.6, for any
A,B ∈ B and any essential idempotent p we have p-limµ(A ∩ TnB) = µ(A)µ(B),
and hence Rε

A,B is a D∗-set. Recalling that weak mixing can be characterized by
the relation

lim
N−M→∞

1
N −M

N−1∑

n=M

|µ(A ∩ TnB)− µ(A)µ(B)| → 0,

we see that the set Rε
A,B has Banach density 1.

To prove the converse, assume that (X,B, µ, T ) is not weakly mixing. If µ is
ergodic then there exists an eigenfunction f which takes values in a nontrivial
subgroup G of the unit circle and sends the measure µ (via the conjugate map
f∗(µ)(A) = µ(f−1A)) to the Haar measure λ on G. There exists a sequence of
trigonometric polynomials Wk defined on the unit circle and converging in L2(λ) to
the characteristic function of, say, the upper semicircle {z : |z| = 1; 0 ≤ arg(z) < π}.
Clearly, f assumes values in the upper semicircle with probability 1

2 . The functions
Wk ◦ f converge in L2(µ) to the characteristic function of a set A of measure 1

2 .
Since the powers fk are also eigenfunctions, all eigenfunctions belong to Hc, and
since Hc is a closed linear space, 1A ∈ Hc.9 If µ is not ergodic, the fact that Hc

contains a nontrivial characteristic function is immediate. Now, by Lemma 3.3 one
has, for any essential idempotent, p-lim1T−nA = p-lim (Tn1A) = 1A, and hence
p-limµ(A ∩ TnAc) = p-limµ(T−nA ∩Ac) = 0, so that Rε

A,Ac is not D∗. ¤

9The existence of a nontrivial characteristic function in Hc can be also deduced using the
classical fact that an ergodic not weakly mixing system has nontrivial Kronecker factor isomorphic
to an ergodic rotation on a compact abelian group.
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Theorem 3.10. (see Theorem 1.6 (5), see also Proposition 9.22 in [F]). The system
(X,B, µ, T ) is mildly mixing if and only if for any A,B ∈ B and ε > 0 the set Rε

A,B

is IP∗.

Proof. Assume that (X,B, µ, T ) is mildly mixing. Then for every nonzero idem-
potent p ∈ βZ one has p-lim µ(A ∩ T−nB) = µ(A)µ(B). To see this it suffices to
verify that p-lim Tnf = 0 in L2 for every f with zero intergral (and then apply this
to f = 1B − µ(B)). Indeed, if p-lim Tnf = g 6= 0 then p-limTng = g (because p is
an idempotent), hence g is a rigid function. This implies Rε

A,B ∈ p, hence Rε
A,B is

IP∗.
To prove the converse, assume that the system is not mildly mixing. Let f ∈

L2(µ) be a nonconstant real rigid function. For some t ∈ R and ε > 0 both
A = {x : f(x) < t} and B = {x : f(x) ≥ t + ε} have positive measure. It is easy
to see that the set {n ∈ Z : ‖Tnf − f‖ < ε2} is an IP-set, on the other hand it is
disjoint from Rε

A,B . Thus Rε
A,B is not an IP∗-set. ¤

Section 4. An example of a weakly
mixing system for which Rε

A,B is not IP∗+.

Let U be a unitary operator on a separable Hilbert space H. Let x ∈ H.
It is known that the sequence an = 〈Unx, x〉 is positive definite, which implies
an = ∫ zndν for some probability measure ν (depending on x) supported by the
unit circle T = {z : |z| = 1}. The action of U on the closed cyclic subspace
Span{Unx : n ∈ Z} is unitarily isomorphic to the multiplication by the identity
function z on L2(ν). Temporarily we restrict our attention to such actions only,
i.e., H will denote L2(ν) and U will stand for the multiplication by the element z.
Recall that the Banach-Alaoglu Theorem asserts that the unit ball B of L2(ν) is
weakly compact.

Clearly, U is a selfhomeomorphism of B in the weak topology, hence we obtain
a topological dynamical system (B,U).

Let C be a subset of T of positive measure ν. Suppose that p-lim zn = 1C (in the
weak topology), for some ultrafilter p ∈ βZ. We will now show that there exists an
idempotent with the same property. First of all, notice that then p-lim zn1C = 1C

because the weak convergence holds when restricted to C and outside of C we
have changed all functions to zero. This easily implies that the set of ultrafilters
p for which p-lim zn = 1C is a semigroup. It is also closed, so it does contain an
idempotent. Actually one easily shows that the converse also holds: p-lim zn is a
characteristic function of a set for any idempotent p, however, we will not need this.

Now assume that ν0 is a nonatomic measure supported by a Kronecker set Λ ⊂ T
(see [C-F-S] Appendix 4; in particular, Λ is a topological Cantor set). By definition,
the sequence of functions (zn) restricted to Λ is uniformly dense in the set of all
continuous unimodular functions on Λ, which easily implies that this sequence is
also weakly dense in the (weakly compact) set B0(ν0) ⊂ L2(ν0) defined as the set
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of all functions f satisfying |f | ≤ 1. The system (B0(ν0), U) is now topologically
transitive (with the constant function 1 as a transitive point), and every measurable
subset C of Λ (modulo the measure ν0) corresponds to at least one idempotent p
via the relation p-lim Un1 = 1C in this system.

For some of the constructions below we will need a symmetric measure ν, i.e.,
a measure satisfying ν(C) = ν(C∗), where C∗ = {z : z ∈ C}. Recall that for
Kronecker sets Λ ∩ Λ∗ = ∅. Let K = Λ ∪ Λ∗ and let ν = 1

2 (ν0 + ν∗0 ), where
ν∗0 is a measure on Λ∗ symmetric to ν0. For f0 ∈ B0(ν0) define f ∈ B0(ν) by
the rule f(z) = f0(z) for z ∈ Λ and f(z) = f0(z) for z ∈ Λ∗. The map f0 7→
f establishes a topological conjugacy between (B0(ν0), U) and (B̃0(ν), U), where
B̃0(ν) now denotes the intersection of B0(ν) with the collection of all functions
satisfying the symmetry condition f(z) = f(z), (in either space U is the operator
of multiplication by z). It is essential that the function z itself satisfies the above
symmetry condition, so U is well defined on B̃0(ν).

We now proceed with further details of the construction of the example.
Consider k ∈ Z. There are two possible cases:

(1) ν{z : |Re zk| > 1
2} > 1

3

and (2), the opposite. It follows immediately from the definition of a Kronecker set
that both cases are represented by non-empty sets of k’s. An elementary (but key)
observation is that if k and k0 satisfy (2) then k + k0 necessarily satisfies (1). We
now fix one representative k0 satisfying (2). If k satisfies (1) then either

ν{z : Re zk > 1
2} ≥ 1

6 , or ν{z : Re zk < − 1
2} ≥ 1

6 .

For k satisfying (1) let Ck denote the larger of the two above sets (choose any one
if their measures are equal). For k satisfying (2) Ck is defined as the larger of the
sets {z : Re zk+k0 > 1

2} or {z : Re zk+k0 < − 1
2}. The following facts are obvious

for each k:

Ck = C∗k ,∣∣∣∣
∫

Ck

zk dν

∣∣∣∣ ≥ 1
12 (in case (1)),

∣∣∣∣
∫

Ck

zk+k0 dν

∣∣∣∣ ≥ 1
12 (in case (2)).

For unified notation, define r(k) = 0 if k satisfies (1) and r(k) = k0 if k satisfies (2).
We can now write ∣∣∣∣

∫

Ck

zk+r(k) dν

∣∣∣∣ ≥ 1
12 .
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Clearly, by symmetry, all the above integrals are real.
Let pk be an idempotent corresponding to the set Ck, i.e., such that pk-lim zn =

1Ck
(weakly). Then

pk-lim
∣∣∣∣
∫

zn+k+r(k) dν

∣∣∣∣ =
∣∣∣∣
∫

p-lim zn+k+r(k) dν

∣∣∣∣ =
∣∣∣∣
∫

Ck

zk+r(k) dν

∣∣∣∣ ≥
1
12

.

Obviously, because the inequality |∫ g dν| > 1
13 holds on a weakly open set of

functions, the set of n’s for which
∣∣∫ zn+k+r(k) dν

∣∣ > 1
13 belongs to the idempotent

ultrafilter pk, hence contains an IP-set Mk. We have proved the following statement

Lemma 4.1. Let U be unitary operator on a Hilbert space H. If x ∈ H has spectral
measure ν symmetric and concentrated on a union K of a Kronecker set Λ and its
complex conjugate reflection Λ∗ then for every k there exists an IP-set Mk such
that for every n ∈ Mk ∣∣∣

〈
Un+k+r(k)x, x

〉∣∣∣ >
1
13

,

where r(k) assumes only two values: 0 and some k0 ∈ Z. This implies that for
E = {n ∈ Z : |〈Unx, x〉| < 1

8}, the intersection E ∩ (E + k0) is not IP∗+.

The above construction can be applied to weakly mixing measure preserving
transformations, with an interpretation in terms of fat intersections (announced in
the Introduction as Theorem 1.7)

Theorem 4.2. There exists a weakly mixing invertible measure-preserving trans-
formation (X ′,B′, µ′, T ′), two sets A′, B′ ∈ X ′ and ε > 0 such that the set of times
of ε-fat intersections Rε

A′,B′ is not IP∗+. In particular, this shows that the set Rε
x,y

discussed in Theorem 3.7 need not be IP∗+.

Proof. The construction will involve spectral theory of Gauss-Kronecker systems,
namely the fact that there exists a weakly mixing measure-preserving transfor-
mation (X,B, µ, T ) and a function f ∈ L2(µ) with zero integral (we will write
f ∈ L2

0(µ)), such that the spectral measure ν of f with respect to the unitary op-
erator UT induced by T is supported by a set K ⊂ T as described in Lemma 4.1
(see e.g. [C-F-S], chapter 8 section 2 and chapter 14 section 4).

Denote J = {n ∈ Z : |〈Un
T f, f〉| > 1

13}. By Lemma 4.1, this set contains for each
k the shifted IP-set Mk+k+r(k). Ignoring a small set A1 ⊂ X of measure 1

p (p ∈ N)
the function f can be uniformly, up to some 1

q , approximated by a simple zero
integral function g constant on elements of some partition A = {Ai : i = 1, . . . , p}
of X into sets of equal measures 1

p . By choosing q and p large enough we can thus
ensure that |〈Un

T g, g〉| > 1
14 for all n ∈ J . Denote by G = (gi)i=1,...,p the vector

with gi = g(Ai). The formula

F (A) = GAGT
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defines a continuous function on p× p matrices A = [ai,j ], assuming value 0 at the
matrix consisting of equal entries 1

p2 . Thus there exists a positive constant δ such
that |GAGT| > 1

10 implies |ai,j − 1
p2 | > δ for at least one pair of indices (i, j).

For given n let An denote the matrix with entries ai,j = µ(TnAi ∩ Aj). As easily
verified,

〈Un
T g, g〉 = F (An),

so, for n ∈ J we obtain that

µ(TnAi ∩Aj) differs from µ(Ai)µ(Aj) = 1
p2 by at least δ(*)

for at least one pair of sets Ai, Aj (depending on n).

The final step is a construction of a pair of sets which satisfies a similar “fault of
independence” (perhaps with a smaller constant) for all n in the union of Mk + k.
These sets will be found in the direct 2p2-fold Cartesian product (X ′, µ′, T ′) =
(X×2p2

, µ×2p2
, T×2p2

) as described below. Note that (X ′, µ′, T ′) remains a weakly
mixing system. The desired sets are:

A = (A1 ×A1 × · · · ×A1)× (A2 ×A2 × · · · ×A2)× · · · × (Ap ×Ap × · · · ×Ap)×
× (T k0A1× · · ·×T k0A1)× (T k0A2× · · ·×T k0A2)× · · ·× (T k0Ap× · · ·×T k0Ap),

with p repetitions in each parentheses, and

B = (A1, A2,× · · · ×Ap)× (A1, A2,× · · · ×Ap)× · · · × (A1, A2,× · · · ×Ap),

with 2p repetitions of the parentheses. Now observe that

µ′(T ′n+k
A′ ∩B′) =

∏

i,j

µ(Tn+kAi ∩Aj) ·
∏

i,j

µ(Tn+k+k0Ai ∩Aj).

Both products are of p2 nonnegative numbers whose sum is 1. It is an elementary

exercise that among such products the largest is
(

1
p2

)p2

achieved only if all terms

are equal 1
p2 . Otherwise it is strictly smaller. So, by continuity, whenever at

least one term of this product differs form 1
p2 by δ (in either direction), then the

whole product is smaller than
(

1
p2

)p2

− γ, where γ is a some fixed positive number
(depending only on δ).

Now let n ∈ Mk. Then, either n + k or n + k + k0 belongs to J . So, by (*),
at least one term in at least one of the above product does differ from 1

p2 by δ,

and, as a consequence, one of the products is smaller than
(

1
p2

)p2

− γ. Since the
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other product is still at most
(

1
p2

)p2

, the discussed measure of intersection does
not exceed (

1
p2

)2p2

−
(

1
p2

)p2

γ.

The first term coincides with µ′(A′)µ′(B′). The second term is a positive constant
ε. We have proved that the set Rε

A′,B′ of times of ε-fat intersections for A′ and B′

misses all the shifted IP-sets Mk + k, so is not IP∗+. ¤

Section 5. An intermediate class of weakly mixing transformations

This section contains the construction announced in Theorem 1.8.

Theorem 5.1. There exists a nonempty class of weakly mixing rank-one rigid
transformations (X,B, µ, T ), such that the set of ε-fat intersections Rε

A,B is IP∗+
for every ε > 0 and any measurable sets A,B, but it is not always IP∗.

Proof. In the argument below we will skip the tedious but relatively obvious spec-
ification of “epsilons” and “deltas”.

The construction of (X,B, µ, T ) follows the standard scheme of “cutting and
stacking with spacers” (see e.g. [P] Section 4.5). We start with the interval [0, 1]
which we call tower ∆1 of height h1 = 1. Having constructed a tower ∆2m−1 (with
an odd index) of height h2m−1 we choose an integer q2m−1 such that h2m−1

q2m−1
is small,

cut the tower into 2q2m−1 equal width columns and add single spacers above the
left q2m−1 columns (see figure below).

−−−−−
−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−

Then we stack, creating the tower ∆2m whose height equals h2m = 2q2m−1h2m−1 +
q2m−1. Next, we cut this tower into q2m (which is larger than h2m) columns and
we stack them, this time without adding any spacers. This gives us tower ∆2m+1

of height h2m+1 = q2mh2m. Continuing in this manner (note that we insert spac-
ers only when constructing towers with even indices) we arrive at a space with a
bounded measure and a measure preserving transformation. After normalizing we
obtain a probability measure preserving rank-one system (X,B, µ, T ).

Let L2
0(µ) denote the subspace of L2(µ) consisting of functions with zero integral.

Let f ∈ L2
0(µ) be a complex-valued function of norm 1, which is constant on levels

of the tower ∆2m0−1 for some m0 ∈ N and zero on the spacers added in the later
steps. We are interested in the sequence µ̂f (n) = 〈Tnf, f〉. Fix some n ∈ N.
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Choose m > m0. Let x be a “typical” point in X. We are going to observe how
the orbits of x and Tnx, pass through the tower ∆2m. Let n1 be the smallest k ≥ 0
such that Tn+kx belongs to the base of the tower, and n2 be the smallest k ≥ n1

such that T kx belongs to the base of the tower. Define n0 = n2 − n1. Clearly,
independently of our choice of n, 0 ≤ n0 < h2m. Consider first the case when
n0 < h2m

2 . We continue our discussion with the help of the figure below. The top
and bottom lines represent the orbits of Tnx and x, respectively, every three dashes
correspond to a passage through the tower ∆2m−1, zeros correspond to the visits
in the spacers, vertical lines separate the passages through the tower ∆2m−1 not
separated by spacers, the question marks indicate possible spacers added at later
stages of our construction.

· · · 0−−− 0−−− 0−−− 0−−−|−−−|−−−|−−−|−−−?

next passage︷ ︸︸ ︷
−−−0−−− 0 · · ·

−−− 0−−− 0−−− 0−−− 0−−− 0−−−|−−−|−−−|−−−|−−−?

| shift 1 | mixing | shift 2 | mixing |
We distinguish four consecutive intervals on the time axis appearing in the figure:
• the first one, denoted in the figure as “shift 1”, roughly of length h2m

2 −n0, where
spacers appear in both orbits, so that the pairs of “contemporary” passages through
the tower ∆2m−1 for x and Tnx are all shifted in time by the same amount
• the second one, denoted in the figure as “mixing”, roughly of length n0, with
spacers in the orbit of x and without spacers in the orbit of Tnx, so that the shifts
of “contemporary” passages through ∆2m−1 change progressively by a unit
• the third one, denoted as “shift 2”, roughly of the same length as the first one,
without spacers in both orbits, with all shifts the same but perhaps different than
shift 1
• the fourth one, which is again of the “mixing” type (in this interval Tnx starts its
next passage through ∆2m); the possible spacers appearing at the question marks
will not change the mixing type of this last interval.

If h2m

2 ≤ n0 < h2m then one has to interpret the top line as the orbit of x and
the bottom line as the orbit of Tnx.

Assuming that the mixing intervals are not too short they can be divided into
some number of intervals of length (h2m−1 + 1)h2m−1 which we call “cycles”, and
short “remainders” at both ends. In every cycle the orbit of one of the points
x, Tnx passes h2m−1 + 1 times through the tower ∆2m−1 without “hitting” the
spacers, while the other orbit passes through this tower h2m−1 times “hitting” the
spacers (in the figure we have roughly one complete cycle; the picture is too small
to show real proportions). Notice that the average value of f(T i+nx)f(T ix) along a
complete cycle equals 0 (because each fixed level of the tower ∆2m−1 for x “meets”
every levels of the same tower for Tnx the same number of times, f is constant on
such levels with average value 0).
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Every time the orbit of x passes through ∆2m we observe a “pattern” of the four
intervals: shift 1/mixing/shift 2/mixing. Such patterns will be repeated throughout
the orbit, each with its own parameter n0. (This parameter will change form one
pattern to another only when a higher order spacer appears at a place indicated by
a question mark either in the orbit of x or in the orbit of Tnx but not in both).

These observations lead us to the following conclusions:

(a) If, in a significant fraction of all patterns, the mixing intervals are not too
short (i.e., when the parameters n0 are not too close to 0 or to h2m), then the
contribution of the complete cycles causes the value of 〈Tnf, f〉 to be of modulus
essentially smaller than 1.
(b) If the mixing intervals “dominate” (i.e., in majority of the patterns, n0 is close
to h2m

2 ), then the value of 〈Tnf, f〉 is close to zero. (We assume that q2m−1 is
so large in comparison with h2m−1 that in a pattern dominated by its two mixing
intervals, the length of the mixing interval contains so many complete cycles that
we can safely ignore the contribution of the “remainders”).

Now suppose the value of 〈Tnf, f〉 is close to 1. By (a), this implies that n0 is either
small or close to h2m in majority of the patterns shift 1/mixing/shift 2/mixing. In
this case we replace n by n + h2m

2 , and we will have the domination of mixing
intervals, as described in case (b). Then, not only for f but also for any other
normalized function f ′ ∈ L2

0(µ) which is constant on the levels of ∆2m0−1, the
following holds:

(c) 〈Tn+
h2m

2 f ′, f ′〉 is close to zero.

This is true for every m > m0. For fixed m and any k ∈ Z with |k| relatively small
compared to h2m (still very large if m is large) n + k is not much different from n
in the above arguments, hence the condition that 〈Tnf, f〉 is close to 1 implies that

(d) 〈Tn+k+
h2m

2 f ′, f ′〉 is close to zero.

In particular, this proves that T is weakly mixing, since, for f ′ approximating
an eigenfunction, the values of 〈Tnf ′, f ′〉 which are close to 1 appear with bounded
gaps, while the parameter k in (d) can range through arbitrarily long intervals of
integers.

Our construction produces a rank one system and it is known that rank-one
transformation has simple spectrum (see [C-N] for more details on rank one sys-
tems). so there exists a cyclic vector fc in L2

0(µ). Fix a pair of functions φ and
ψ in L2

0(µ). These functions can be approximated by finite combinations of the
functions of the form T kfc.

Now consider a nonzero idempotent p ∈ βZ. The weak limit p-lim (Tng) exists for
every g ∈ L2

0(µ) and equals some g′ ∈ L2
0(µ) such that p-lim (Tng′) = g′. Suppose

g′ 6= 0 for some g. Then we can normalize g′ and denote it g′′. We can now
approximate g′′ by f ∈ L2

0(µ) constant on the levels of some tower ∆2m0−1 and
zero on spacers added in later stages of the construction. Clearly, p-lim 〈Tnf, f〉 is
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a number close to 1. This implies that every IP-set M belonging to p contains a
sequence M ′ along which n does not satisfy (a) (i.e., n0 are small or close to h2m

in majority of patterns), and hence satisfy (c) and (d).
If m is large enough, the hypotheses (c) and (d) hold (with slightly worse error

terms) also for f ′ = fc. Since every term 〈Tn+
h2m

2 φ, ψ〉 splits into a finite combina-
tion of terms of the form 〈Tn+k+

h2m
2 fc, fc〉 (with coefficients and k’s not depending

on n), for sufficiently large m1, every such term with n ∈ M ′ is close to zero. This
proves that Rε

φ,ψ intersects M + h2m1
2 . The choice of m1 is independent on the

idempotent p satisfying g′ 6= 0 for some g (it only depends on φ and ψ).
Now assume that p is such that g′ = 0 for all g ∈ L2

0(µ). In particular this

is true for g = Tn+
h2m1

2 φ so p-lim 〈Tn+
h2m1

2 φ, ψ〉 = 0, hence again Rε
φ,ψ intersects

M+ h2m1
2 . We have proved that Rε

φ,ψ is IP∗+. This immediately implies an analogous
statement for sets A,B.

Finally, observe that the system is rigid along the sequence h2m (because of
the many consequential passages through ∆2m without spacers in the next tower).
Thus it is not mildly mixing, hence at leat one set Rε

A,B is not IP∗. This concludes
the proof. ¤

Appendix

Theorem A.1. There exist an invertible topologically mixing symbolic dynamical
system (X ′, T ′) with a fixpoint as a unique minimal set and having an invariant
measure with full topological support.

Sketch of the Proof. (The construction is an adaptation of one appearing in The-
orem 1 in [D-Y]). Start with an aperiodic strictly ergodic (minimal with unique
invariant measure µ) subshift (X, T ) on two symbols {a, b}. From each point x ∈ X
we will create uncountably many points (sequences) x′ over three symbols {a, b, c},
which will constitute our new desired subshift (X ′, T ′). Namely, fix a sequence of
closed and open sets (e.g., cylinders) Uk ⊂ X shrinking to a point x∗ so fast that∑∞

k=1 µ(Uk) < ∞. For x = . . . x−1, x0, x1, . . . let (ni)i∈Z be the times of the visits
of x in U1 and then let ki denote the depth of each visit, i.e., the maximal k such
that Tni(x) ∈ Uk. Let c be a new (third) symbol and let ck = [c, c, c, . . . , c] stand for
the block of k symbols c. Now, from x we create the sequences x′ by inserting into
x, between xni−1 and xni , either the block cki or cki+1 (all possible such choices
lead to uncountably many sequences x′ made from one x). For example, one of the
points x′ will be

. . . , xn−1−1, c
k−1+1, xn−1 , . . . , xn0−1, c

k0+1, xn0 , . . . , xn1−1, c
k1 , xn1 , . . .

The points in the orbit of x∗ will produce exceptional sequences x′ – either ending
or beginning with infinitely many symbols c. Let X ′ be the closure of the set of all
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so constructed sequences x′ from all x ∈ X. To verify the properties claimed in the
formulation of the theorem notice the following:
(1) In each x′ and for each k, the blocks ck appear with bounded gaps. This implies
that the fixpoint c∞ = . . . cccccc . . . is the only minimal set in X ′.
(2) We now prove that there exists a finite invariant measure whose support is
X ′. Viewing the symbols c as “spacers”, the system (X ′, T ′) can be thought of
as a “skyscraper”: The base is the set {x′ : x′0 6= c}, the levels (for k > 0)
are {x′ : x′−k 6= c, [x′−k+1, . . . , x

′
0] = ck}. We do not include in this skyscraper the

points x′ obtained from points x belonging to the orbit of x∗, but as we will explain,
such points form a set of measure zero. The first return time map induced on the
base consists in shifting each x′ by the distance to the nearest symbol different
from c, so that (at coordinate zero) it merely reads the consecutive entries of the
original sequence x ∈ X. Note that each point x′ is determined by two sequences: x
and a {0, 1}-valued sequence y = (yi) governing the (binary) decisions made while
inserting either cki or cki+1. All (uncountably many) different points obtained from
one x remain different in the system induced on the base of the skyscraper, hence
this induced system is not isomorphic to (X, T ). It is however an extension of
(X,T ) and it is not hard to see that this extension has the form of a skew product
TS of (X, T ) (minus the orbit of x∗) with the full shift (Y, S) on two symbols {0, 1}
defined by

TS(x, y) = (Tx, S1U1 (x)y),

i.e., we apply the shift on the second coordinate if x ∈ U1, otherwise the entry on
the second coordinate remains unchanged. Clearly, the product measure µ × λ is
TS-invariant (where λ denotes the homogeneous Bernoulli measure on the two-shift
Y ), and has full topological support in the product space. Also, we note that the
exceptional ponits created from the orbit of x∗ form a set of measure zero for the
product measure (it is the lift of a countable set and µ is nonatomic). Observe that
the first level of the skyscraper extends above a dense subset of U1 × Y and for
k ≥ 2 the kth level extends above a dense subset of Uk−1×Y . Since

∑
k µ(Uk) < ∞,

the product measure µ× λ on the base “lifts” to a finite invariant measure on the
whole skyscraper with full topological support in the skyscraper. By an obvious
approximation argument, this measure has full support also in X ′. The desired
probability measure is obtained by normalization.
(3) We will show that under additional assumptions (X ′, T ′) can be made topolog-
ically mixing. Lat us impose a stronger requirement on the speed of decay of the
sets Uk: the smallest gap between visits in Uk (k ≥ 2) is larger than 2k times the
largest gap between visits in U1. This implies that between any two visits in Uk

each point visits U1 at least 2k times (of course this can be done by choosing Uk to
be contained in balls around x∗ of rapidly decreasing radii).

Let x′ ∈ X ′ be created from a point x ∈ X not belonging to the orbit of x∗, and
let B′ be the finite block x′[−m′,m′]. (Note that every block appearing in X ′ can be
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obtained this way.) Let B = x[−m,m] be such a block (probably much longer than
B′) that the appearance of B in any element z ∈ X (with the coordinate zero in
the center) determines that for a sufficiently long time (forward and backward) the
orbit of z visits the sets Uk at exactly the same times as does x, so that among the
points z′ created from z there exists one with z′[−m′, m′] = B′. By minimality, B
appears at a positive coordinate in x∗, say B = x∗[r−m, r+m]. Since, for each k, x∗

belongs to Uk, its return to Uk is preceded by at least 2k visits in U1. Begin creating
the sequence x∗′ from x∗ by insertions. Its negative part is filled with . . . , c, c, c and
positive – with the positive part of x∗ with appropriate insertions. The insertions
into x∗[r−m, r+m] may be arranged so that x∗′[r′−m′, r′+m′] = B′. In order to
prove the mixing property we need to show that the construction of x∗′ can be then
continued to the right in so many ways that any block C ′ possible in X ′ will appear
in these continuations at all distances larger than some constant. Fix one such C ′

and let C be a block appearing in X making the creation of C ′ possible (just like B
was chosen for B′). Notice that C appears in x∗ with bounded gaps. Let x∗1

′, x∗2
′, . . .

denote the sequence of continuations of x∗′ such that in x∗n
′ all insertions to the

right from r + m are of the smaller type (i.e., cki) except inside one selected (nth
after position r + m) occurrence of C, where the insertions are adjusted to create
the block C ′. Let dn be the distance between the block B′ (made form the copy of
B centered at position r) and C ′ (the one made from the nth copy of C) in x∗n

′.
We can now enlarge each distance dn by one, two, or more units, replacing one,
two, or more insertions between the position r + m and the considered nth copy of
C, by insertions of the larger type cki+1. The last thing to show is that for n large
enough there are at least dn+1 − dn available such “regulating insertions” there, so
that enlarging the distance dn we can reach dn+1. This will prove that it is possible
to obtain C ′ at any sufficiently large distance following B′. This is the essence of
topological mixing.

Let g denote the maximal gap between the occurrences of C in x∗. Let k0 be
such that the distance between two visits of the orbit of x∗ in Uk0+1 exceeds g,
so that at most one visit in Uk0+1 is possible between two blocks C. If n is such,
that between the nth and (n+1)st copy of C (counting from the right end r + m
of B) the orbit of x∗ visits Uk0+1 with some depth k > gk0 + r + m + g, then
the distance dn+1 − dn does not exceed gk0 + k (there are at most g insertions of
size k0, k is the size of the unique larger insertion). In such case this unique visit
to Uk is preceded by at least 2k > k + gk0 + r + m + g visits in U1, of which at
least k + gk0 > dn+1 − dn fall between B and the nth copy of C, allowing equally
many “regulating insertions”, as it is required. If n is such that between the nth
and n + 1st copies of C there is no visit of depth larger than gk0 + r + m + g then
dn+1 − dn is bounded (for instance, by g(gk0 + r + m + g)). So, in either case, if
n is large enough, the nth copy of C is preceded by sufficiently many visits in U1

allowing sufficiently many “regulating insertions”. ¤
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Final remarks
We would like to indicate one natural way of extending statements (4) and (5) in

Theorem 1.6. Let k ∈ N. For i = 1, 2, . . . , k let Pi(n) be nonconstant polynomials
satisfying Pi(Z) ⊂ Z. Given a measure preserving system (X,B, µ, T ), sets Ai ∈ B
(i ∈ [0, k]) and ε > 0, define

Rε
A0,A1,...,Ak

=

{n ∈ Z :µ(A0 ∩ TP1(n)A1 ∩ . . . TPk(n)Ak)>µ(A0)µ(A1) · · ·µ(Ak)− ε},
Qε

A0,A1,...,Ak
=

{n∈ Z :µ(A0 ∩ TP1(n)A1 ∩ . . . TPk(n)Ak)− µ(A0)µ(A1) · · ·µ(Ak)| < ε}.

Denote by Rk(X,B, µ, T ) and Qk(X,B, µ, T ) the family of all sets of the form
Rε

A0,A1,...,Ak
and the family of all sets of the form Qε

A0,A1,...,Ak
, respectively (note

that both Rk(X,B, µ, T ) and Qk(X,B, µ, T ) depend on the choice of the polyno-
mials Pi(n)). Then one can show that:
(i) (X,B, µ, T ) is weakly mixing iff for any k ≥ 1 and any fixed system of integer-
valued polynomials P1(n), . . . , Pk(n) Rk(X,B, µ, T ) ∈ D∗.
(ii) (X,B, µ, T ) is mildly mixing iff for any k ≥ 1 and any fixed system of integer-
valued polynomials P1(n), . . . , Pk(n) Rk(X,B, µ, T ) ∈ IP∗.
Also, it is easy to see that in (i) the family D∗ can be equivalently replaced by D∗•, C∗
or C∗• , while in (ii) the family IP∗ can be equivalently replaced by IP∗•. Addition-
ally, all resulting statements hold if Qk(X,B, µ, T ) is used in place of Rk(X,B, µ, T )
(cf. Remark 1).

The main ingredient in proving the statements (i) and (ii) is provided by multiple
recurrence theorems along ultrafilters (see Theorems 4.8 and 5.1(v) in [B2]).

With regard to mixing, it is proved in [K-Y] that
(iii) (X,B, µ, T ) is mixing iff for any three sets A,B, C ∈ B all sets of the form
Qε

A,B,C = {n ∈ Z : |µ(A ∩ Tα1nB ∩ Tα2nC) − µ(A)µ(B)µ(C)| < ε} belong to
∆∗. Obviously, an analogous statement involving the sets Rε

A,B,C = {n ∈ Z :
|µ(A ∩ Tα1nB ∩ Tα2nC) > µ(A)µ(B)µ(C)| − ε} is also true. As before, the family
∆∗ can be replaced by ∆∗

•. The extension of this result to more general sets of
polynomials is unknown.
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