Central Sets and a Non-Commutative Roth Theorem

V. Bergelson and R. McCutcheon

Measurable multiple recurrence results for non-nilpotent groups have up to
now been limited to an ergodic Roth theorem [BMZ], which states that
for any measure preserving actions {Ty}scq and {Sy}seq of a countable
amenable group G on a probability space (X, B, ) that commute in the
sense TSy, = SpT, for all g,h € G, and any A € A with p(A) > 0,
lim,, ﬁ > g, MANT,TAN(TyS,) 7 A) > 0 for any Fglner sequence (®,,)
for G. This yields, in particular, that {g: p(ANT,; AN (T,S,)"1A4) > 0}
is syndetic. Here, using novel ultrafilter techniques for doing what might
be called “ergodic theory without averaging”, we remove the amenability
condition in this result while simultaneously strengthening the conclusion.

1. Introduction.

Let T be an invertible measure preserving transformation on a probability space (X, A, )
and let A € A with pu(A) > 0. The classical and widely applicable Poincaré recurrence
theorem states that u(ANT-"A) > 0 for some n € N. While nowadays this result is
merely an exercise, some of its extensions are highly non-trivial, for instance the following
theorem of H. Furstenberg from [F1].

Theorem 1.1. Let (X, A, 1) be a probability space and suppose T : X — X is invertible
and p-preserving. For any k € N and any A € A with p(A) > 0, the set R = {n € Z:
WANT"ANT MAN---NT7*A) > 0} is syndetic?.

The significance of Theorem 1.1 was twofold. First, it provided an independent proof
of Szemerédi’s celebrated theorem [Sz] on arithmetic progressions?. Perhaps more im-
portantly, its proof proceeded by way of the development of a deep structure theory for
measure preserving Z-actions that has proved susceptible to a wide variety of modifica-
tions and extensions, leading to many new, far-reaching multiple recurrence results and
combinatorial applications. See for example, [FK1-3], [BL], [L], [BM1], [BMZ] and [BLM].
These various results, together with their applications, form the core body of what is today
called Ergodic Ramsey Theory.

While the accumulated techniques and ideology of Ergodic Ramsey Theory have for
some time formed an established, well understood, coherent body of knowledge for abelian
or even nilpotent (semi-)groups, multiple recurrence results for more general groups are
scarce indeed, being essentially restricted to the following double recurrence theorem for
amenable groups from [BMZ].

Theorem 1.2. Let G be a countable amenable group and let (Ty)geq, (Sq)gcc be measure
preserving G-actions on a probability space (X, A, u) satisfying T,Sy, = SpT, for all g, h €

If G is a group, a set S C G is left syndetic (vespectively right syndetic) if for some
finite set F' C G, one has G = U, cpgS (respectively G = J,cp Sg). For commutative

groups the notions clearly coincide, hence one says simply syndetic.
2For every § > 0 and k € N there is an N € N such that for every set E C {1,..., N}
with |E| > 0N, E contains an arithmetic progression of length k.
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G. Then for any A € A with u(A) > 0 there exists A > 0 such that
{9€G:u(ANT; T AN (TyS,) 71 A) > A}
is both left and right syndetic.

Theorem 1.2 has a variety of applications for density and partition Ramsey theory in
amenable groups; we mention here just one, for two others see [BMZ, Corollary 7.2] and
[BM2, Theorem 3.4]. (In Section 4 of this paper, we give refinements of all three.)

Theorem 1.3. Suppose that G is a countable amenable group and ' C GG X G has positive
upper density d = limsup,, |E|gf|"| with respect to a left Fglner sequence 3 (®,,) for G x G.
Then

{9 € G: there exists (a,b) € G x G such that {(a,b), (g9a,b), (ga,gb)} C E}

is both left and right syndetic in G.

One feature of Theorem 1.2 that we will be interested in improving here is the “large-
ness” of the set of double return times Ry = {g € G : p(ANT; AN (T,S,)"A) > 0}
achieved therein. Although syndeticity is a strong and historically apt property, being the
very one Furstenberg obtained for the set of multiple return times {n : u(ANT"AN---N
T—*"A) > 0} in [F1], there are good reasons to suspect that R4 has even stronger formu-
lable largeness properties. For example, if R = {g eqG: ,u(BﬂTg_lBﬂ (TgSg)_lB) > O}
is another set of double return times, then R4 N Rp is non-empty (in fact large in the
same sense?). That is to say, the family of double return times sets R4 has the filter prop-
erty, and it would be nice to know, e.g. for the purposes of stengthening of combinatorial
applications, just how exclusive this filter is.

Another sense in which we will be seeking to improve Theorem 1.2 is indicated by the
natural question of whether it holds for non-amenable groups. Since the proof of Theorem
1.2 is achieved in [BMZ] by establishing positivity of limits of Cesaro-type averages having
the form @—lnl > gea, u(ANTy AN (T,S,)""A), where (®y,) is a left Fglner sequence, it
is clear that the question calls for a change in methodology. Aficionados may recognize
that one might tackle both this problem and that of the previous paragraph by utilizing
the “IP structure theory” developed for abelian groups by Furstenberg and Katznelson in
[FK2] and [FK3]. Their strategy was to replace averaging along Fglner sets by so-called
IP limits and to thereby achieve, in the abelian case, the startling result that multiple
return times sets are IP* 5. The reader will now of course anticipate that the IP* notion

3A left (respectively right) Folner sequence for a discrete group H is a sequence of fi-
|gPnNPy, |
e

— 1) as n — oo. For groups, admission of a Fglner sequence is one characteri-

nite sets ®,, C G having the property that for every g € H, — 1 (respectively

(21 gNPy, |
[®n]

zation of amenability.

4This is an easy consequence of the observation that R4 NRp C Raxp, where Raxp =
{geG:puxp((Ax B)N(Ty x Ty) (A x B)N (TySy x TySy) "' (A x B)) > 0}.

5The family of IP* sets is significantly smaller than the set of syndetic sets and does, in
fact, possess the filter property.



has meaning for non-abelian groups (yes) and that we’ll soon prove R4 to be IP* (alas,
no).

As we shall discuss below, methods based on IP-limits fare even worse than Fglner
averaging methods at achieving our unique ends. They do translate seamlessly to the non-
amenable situation, but this is part of the problem; they can’t exploit any of the features
that classical ergodic averaging is designed to exploit (in particular, the compactness of
orbits in the Kronecker factor-see below), and in consequence one is left at the mercy of
the non-commutativity of G. Fortunately a composite method, in which one takes limits
along certain types of ultrafilters (members of the Stone-Cech compactification of G, i.e.
B@), carries the day.

We shall give a brief overview of ultrafilters and the algebraic properties of SG below;
for the purposes of this introduction, it will be convenient to think of an ultrafilter p on
G as a {0, 1}-valued, finitely additive probability measure on the power set of G, that is
P(G). If A C G has p-measure 1, we write A € p and say that A is p-large. This notion
of largeness gives rise to a natural notion of convergence for G-indexed sequences. Indeed,
let (z4)gec be a sequence in a topological space. Given an ultrafilter p € G, one writes
p-limgz, = y if for every neighborhood U of y one has {g : 4 € U} € p. One may easily
check that, in a compact Hausdorff space, p-lim,z, always exists and is unique.

An ultrafilter p € SG is idempotent, or almost shift invariant, if any A € p has the
property that for p-many g € G, the set {h € G : hg € A} is p-large. An important
property of idempotents p that we shall utilize repeatedly is that for a G-indexed sequence
(z4) in a compact Hausdorfl space, p-limgp-limpzy, = p-limgz,. For example, if H is a
separable Hilbert space, and (Uy) is a unitary G-action of H, the foregoing fact implies
that the weak operator limit P = p-lim,U, is itself idempotent and hence the orthogonal
projection onto its range, the space of p-rigid functions {f € H : p-lim,U, f = f}.

This construction has much in common so far with the IP methodology of [FK2],
with p-limits taking an almost identical role to that which IP-limits had there. Things
get really interesting, however, when one requires that the idempotent p have some addi-
tional algebraic properties. For example, if p is a minimal idempotent (see Section 2 for
a definition), then the space of p-rigid functions is equal to the space of functions having
pre-compact orbit {U,f : g € G'}; i.e. the Kronecker factor. The advantage that working
in this more classical object of ergodic theory (normally associated with methods involving
averaging along Folner sequences) confers is that this space is easily seen to be invariant
under the action (Uy). Consequently, one has PU, = U,P. Significantly, this equality may
fail when working with arbitrary idempotents or with IP-limits. On the other hand, in
working with p-limits, one needn’t rely on the presence of Fglner sequences, so that the
method works for general groups. Thus the hybrid nature of our new methodology allows
us to navigate freely between the Scylla of non-invariant factors and Charybdis of classical
ergodic averaging’s sheer meltdown in the face of non-amenability.

We now give a first formulation of our main theorem.

Theorem 1.4. Let G be a countable group, let (X,.4, 1) be a probability space and
suppose that (Tj), (S,) are p-preserving actions of G which commute in the sense that
TySh = SpTy for all g,h € G. Then for any A € A with yu(A) > 0 and any minimal
idempotent p, p-limgu (AN Ty AN (TySy) "1 A) > 0.
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Since it is not immediately obvious that Theorem 1.4 fully generalizes Theorem 1.2,
we will presently offer another, stronger formulation.

Let S be a family of ultrafilters in BG. We say that a set £ C G is an S*-set if for
any p € S, E € p. It is easy to see that for any finite collection {FE,..., Fx} of S*-sets
and any p € S, one has ﬂle FE; € p and hence ﬂle E; is also §*. Hence the family of S*
sets has the filter property. Let now M be the family of minimal idempotents in SG. It
is a standard fact (see, for example, [B]) that any M*-set is right syndetic. An essentially
equivalent way to get at the M* property is as follows. A set C' C G is said to be a central
set if for some p € M, E € p. Now a set E C G is said to be central*, or C*, if it intersects
non-trivially every central set. One easily sees in fact that any C* set intersects every
central set in a central set. Of course, the C* sets are just the M* sets.

Under the hypotheses of Theorem 1.4, what our methods actually show is that for
some A > 0, the set Ray = {g € G:p(AN T, 'AN (TySg)~*A) > A} is C* and hence,
in particular, right syndetic. Switching the roles of T, and S,, one can choose A with the
additional property that R, , = {g€G:pAn Sg_lA N (TySg)~tA) > A} is also C*.
Next observe that R , = {g7": g € Raa} = RZ})\. In particular, RZ})\ is C*. We call a
set E having the property that E~! is C* an inverse C* set. It is an easy exercise that
inverse C* sets are left syndetic. Hence the following reformulation of Theorem 1.4 extends
Theorem 1.2 as well.

Theorem 1.5. Let G be a countable group, let (X, .4, 1) be a probability space and
suppose that (Tj), (Sq) are p-preserving actions of G which commute in the sense that
TySh = SpT, for all g, h € G. Then for any A € A with pu(A) > 0 there exists A > 0 such
that {g € G : p(ANT,;TAN(TySy) "t A) > A} is both C* and inverse C*.

As mentioned before, we have three main combinatorial applications, which shall
be presented in Section 4. The most basic, a simple consequence of Theorem 1.5 and
Furstenberg’s correspondence principle (cf. Proposition 4.1 below), refines Theorem 1.3.
The following theorem, which implies that for any countable amenable group G, every large
enough subset of G x G contains many “isosceles right triangles” {(a,b), (ag,b), (ag, bg)},
is restated below as Theorem 4.1.

Theorem 1.6. Let G be a countable amenable group with identity e and suppose E C
G x G has positive upper density with respect to some right Fglner sequence (®,,). Then
with respect to (®,), for some A >0 {g: d(ENE(g~",e)NE(g~t,g7")) > A} is both C*
and inverse C*.

We should mention that, although most of the results here are formulated for minimal
idempotents, our proof actually establishes that they hold for a wider family of idempo-
tents, which in turn implies that the filter of sets R 4 is even smaller and the combinatorial
corollaries could be correspondingly enhanced. We don’t worry ourselves too much about
this issue but do offer some discussion along these lines in Section 4 below.

The structure of the paper is as follows. In Section 2 we collect a few needed lemmas
and review basic facts about the algebraic structure of SG. In Section 3 we bring these
tools to bear in proving the double recurrence theorem. Section 4 contains the three
aforementioned combinatorial applications as well as discussions concerning the strength
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of our methods. In particular, we discuss here why the proof yields central* results but not
IP* results®. Finally in a fifth section, we speculate about the wider applicability of the
new methodology we are introducing here, offering as a sample of its potential a proof that
a kind of k-fold weak mixing occurs for certain collections of measure preserving actions
of a general group G.

2. Preliminaries.

An ultrafilter p on a set G is a nonempty family of subsets of G satisfying the following
conditions:

(i) 0 & p.

(ii)) If Ae pand A C B then B € p.

(iii) f Ae pand B € pthen ANB€p

(iv)ifre Nand G = Ay U Ay U---U A, then for some i, 1 <i <r, A; €p.

Assume now that (G, -) is a discrete semigroup. We denote, as is customary, by SG the
space of ultrafilters on G. (The reason for this custom is that with the standard topology
we are about to define on it, SG is just the classical Stone-Cech compactification of G .) The
semigroup operation - on G extends naturally to 3G by the rule A€ p-q & {z: Az~ ! €
p} € q, where Az™! = {y € G :yx € A}. Now, for AC G, let A={p€ BG: A€ p}. One
may check that the family A = {A: A C G} is a basis for a topology on BG. Under this
operation and this topology, G becomes a compact Hausdorff left topological semigroup.
(The last condition means that for any fixed ¢ € G, the map p — ¢ - p is continuous. For
more details, see [B] or [HS].)

By a theorem of Ellis [E], any compact semigroup with a left-continuous operation
(in particular, any closed subsemigroup of SG) has an idempotent. If p is idempotent and
A; € p, then since A; € p- p, one may choose straight from the definition of p - p some
g1 € A; such that Ag;' € p (so that also Ay = A; N A197" € p). One may iterate this
process, choosing now g € As with A3 = Ay N A2g2_1 € p. One may now check that
{91,92,9291} C A;. Continuing in this fashion, one may find a sequence (g;) such that
FP({(g:)2,) C Ay, where FP((9:)21) = {9i19ir -~ i, + k € N, i1 > @9 > --- > ir}.
Since for any finite partition of G, some cell is contained in p, the presence of idempotent
ultrafilters gives an immediate proof of Hindman’s theorem?”.

A right ideal (respectively left ideal) of G is a set J C BG such that for every ¢ € SG
and every p € J, p-q € J (respectively ¢ -p € J). An ideal is a set I C G that is both
a left and a right ideal. A minimal right ideal is a non-empty right ideal J containing no
proper, non-empty subset which is itself a right ideal. If J is such and x € J, then zG,
being a non-empty right ideal, must equal J and must also, being the continuous image of
G, be closed. By a routine application of Zorn’s Lemma, any right ideal in G contains a
minimal right ideal.

6 As a matter of fact these difficulties, together with some IP* counterexamples from
[BH] for partition Ramsey theory in free groups, make us wonder whether the naturally
corresponding IP* assertions are even true.

"First proved in [H]. Various formulations exist, one such stating that for any finite
partition of a semigroup G, some cell contains F'P({g;)$2,) for some sequence (g;) in G.
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Let K be the union of the minimal right ideals of BG. Then K is a two-sided ideal, and,
in fact, the smallest two-sided ideal. To see this, note first that, being the union of right
ideals, K is trivially a right ideal. To show that K is a left ideal, let z € K and y € BG.
Let R be a minimal right ideal such that £ € R. Now yz € yR. We claim that yR is a
minimal right ideal. Indeed, let ) # J C yR be a right ideal and let C = {z € R: yz € J}.
Then C' is a non-empty right ideal which is contained in R and so C' = R and J = yR.
Finally, one may easily show that any minimal right ideal must be contained in every two
sided ideal. Hence, if I is a two-sided ideal then IC C I.

A minimal idempotent is an idempotent ultrafilter p that belongs to the minimal ideal
K. Aset A C (G is a right central set if there exists a minimal idempotent p such that A € p.
Right central sets have various largeness properties that prompt the following digression:
A set A C G is right syndetic if for some finite set F' C G one has | J,c At ' =G. A set
T C G is left thick if for every finite set F' C G, there exists some x € G with zF C T.
Finally, a set A C G is right piecewise syndetic if for some finite set F' C G, ,cp Attt
is left thick. It is a standard fact (see e.g. [B]) that right central sets are right piecewise
syndetic. In consequence of this, they have the following largeness feature that will be
critical for us in the proof of Theorem 2.2 below.

Proposition 2.1 ([B]). If A is right central then A™'A = {z € G : yz € A for some y € G}
is right syndetic.

By a unitary representation of a group G on a separable Hilbert space H we mean a
function g — U, taking G' to unitary operators on A in such a way that Uy, = UyUp. In
this case a vector ¢ € H is said to be compact if {Uyp : g € G} is totally bounded in the
strong topology of H. The representation (Uy)geq is said to be weakly mizing if there are
no nonzero compact vectors.

Since the unit ball in H is a compact metrizable space with respect to the weak
topology, for any ultrafilter p on G, p-lim U, f exists weakly for any f € H. Indeed, it is
easy to see that if p-lim,U,f = f weakly then p-limy||U,f — f|| = 0.

The following theorem is from [B]. We include a proof for completeness.

Theorem 2.2. Let (Uy)4ec be a unitary representation of a group G on a Hilbert space
‘H. For any f € H the following are equivalent:

(i) There exists a minimal idempotent p € SG such that p-lim,U, f = f.

(ii) f is a compact vector.

(iii) p-limgU, f = f for every idempotent p € SG.

Proof. (i) = (ii). Forany ¢ >0, A={g € G : [|Uyf — f|| < 5} € p. For any g1,92 € A,
[|[Ug, f — Uy, || < €, which implies that for any g € A~'A one has ||U,f — f|| < e. But
by Proposition 2.1, A~'A is syndetic, meaning that finitely many shifts of A=A cover G.
It follows that finitely many balls of radius € cover {Uyf}4eq, which means that f is a
compact vector.

(ii)= (iii) Let p be an idempotent ultrafilter and set h = p-lim,U, f (strong conver-
gence). For e >0, B={g € G : ||[Uyf — h|| < €} € p, so one may choose x € B such that
Bz~! € p. Choose y € BNBz~!. Then ||U,f—hl|| <€, ||Uyzf—h|| < €and ||U,f—h| <e.
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1f =Rl =[[Uyf = Uyhl| < ||Uyf = hl| + [|h = Uya f[| + [[Uya f = Uyh|]
=[|Uyf = || + [[h = Uye f|| + ||Us f = hl| < 3e.

Since € was arbitrary, one has f = h and p-lim U, f = f.
(iii)= (i) Obvious. O

The following result is motivated by a difference trick of van der Corput and has many
cousins, among them [FK2, Lemma 5.3|, [F2, Lemma 9.24] and [BM1, Proposition 2.18].

Theorem 2.3. Assume that (z,4)gcq is a bounded sequence in a Hilbert space H. Let
p € BG be an idempotent. If p-limpp-limg(zgp,z4) = 0 then p-limgz, = 0 in the weak
topology.

Proof. Without loss of generality we will assume that ||z4|| < 1, g € G. Suppose to

the contrary that p-limgz, = T # 0. Let § = @ and pick £k € N and ¢ > 0 such that
% + € < 0. Inductively choose g1, ...,gr € G such that for all j, 1 < j <k, one has

(i) for every a, B C {1,...,j} with a #0, 8 # 0 and 8 < o, [(2g,g5,Tg,)| < €.

(ii) for every o, 8 C {1,...,j} with 8 # 0 and B < «, p-limg|[(Zgg,gs, Tgga)| < €

(iii) for all » € FP(g1,...,95), (xr,Z) > 6.

(iv) for all 7 € {0} U FP(g1,...,9;), {9: (x4, %) > d}r~' € p.

(v) for all r € FP(g1,...,9;), {h: plimg|{zgn, z4)| < e}r™' € p.

Having done this, we let y; = grgr—1---gi, 1 < i < k, and observe that |(y;,y;)| <€
and (y;,Z) > §, 1 < i # j < k. From the former it follows that (Zle yi,Zle yi) < k+
k%e < k2?8, which implies that \(Zle Yi, T)| < ko, contradicting the latter and completing
the proof.

Suppose then that 0 < j < k and gy,...,g; have been chosen. By the induction
hypothesis,

B=( (N Ao:ied > ) () {9 {oagags Tea) < €})
re{0}UFP(g1,..-,95) a,BC{1,...,7},0#8<a

ﬂ( N {h : plimg[(zgn, T4)| < e}r_l)
r€{0}UF P(g1,...,95)

is a member of p. Therefore, we may choose g;11 € B such that ng__:l € p. It is now a
routine matter to check that (i)-(v) above hold for j replaced by j + 1. O

Theorem 2.4. Let (Uy)gec be a unitary representation of G on a separable Hilbert space
‘H, suppose p € BG is idempotent and for f € H, let Pf = p-lim,U,f weakly. Then P
is the orthogonal projection onto a closed subspace of H. If p is minimal, then for every
g € G and every f € H one has PU,f =U,Pf.

Proof. One may easily check that P is linear and that || P|| < 1. These facts imply that if
P is idempotent then P is an orthogonal projection. One may also check that P is weakly

continuous. Let p be a metric for the weak topology on the unit ball of H and pick some
f in the unit ball. We must show that P?f = Pf.
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Take € > 0 to be arbitrary and let B = {g € G : p(PU,f, P*f) < € and p(U,f, Pf) <
¢}. Then B € p so we may choose x € B such that Bx~! € p. Next choose y € BNBz~1n
{9 € G : p(UU,f,PU,f) < €}. Then p(P2f, Pf) < p(P*f, PU,f) + p(PU.f,U,Usf) +
p(U,U, f, Pf) < 3e. Since € was arbitrary, P2f = Pf and we are done.

Suppose now that p is minimal. Then by Theorem 2.2, P is the orthogonal projection
onto the space of compact functions. Clearly, for any compact function f and any g € G,
Uy f is compact. Suppose now that Ph = 0, and let f be an arbitrary compact function
and g € G. Then (h,U,~1f) = 0, so that (Ugh, f) = 0. But since f is an arbitrary
compact function, this implies that PUsh = 0. We have shown that Ph =0 = PU,h = 0.
Now let f € H be arbitrary. Since Pf is compact, so is U,PF, hence PU,Pf = U,Pf.
On the other hand P(f — Pf) = 0, so letting h = f — Pf in the above argument yields
PU,f — PU,Pf=PUyf -UyPf)=0. SoU,Pf =PU,f. O

As we shall elaborate upon in Section 4, the conclusion PU, = U,P may fail if the
idempotent p used in the construction of P is not minimal.
The following standard theorem follows [FK3, Lemma 3.1].

Theorem 2.5 Suppose that (X, A, ) is a probability space. A closed subspace E C
L%(X, A, i) has the form E = L?(X, B, 1) for a sub-o-algebra B C A if and only if E has
a dense subset Ejy of bounded functions containing the constants and having the property
that if f, g € Eg then {fg, f + g} C Ep.

Finally, we shall require basic facts concerning decomposition of measures over sub-
o-algebras. For more details, the reader is referred to, e.g., [F2, Chapter 5], or [F1,
Section 4]. If (X, A, ) is a Lebesgue space and B C A is a sub-o-algebra, there exists
a family of probability measures {u,; : € X} on X such that for any f € L'(X, A, u)
and any B € B, [ f du = [5([ f duy) du(z). If we write E(f|B)(z) = [ f dpg then
E(f|B) is the conditional expectation of f given B, and the map f — FE(f|B) is the
orthogonal projection from L2(X, A, p) to L?(X,B,u). We can use the disintegration
of p over B to define a measure i on (X x X, A® A) as follows: [ f(z,y) dis(z,y) =
J(J f(z,y) dp, X po(2,y)) du(z). In particular, one has [ f(z)h(y) di(z,y) = [ PfPh dp.
3. Main Theorem.

We now apply the ideas of the previous section to the following situation. Let (X, A, 1) be
a Lebesgue probability space (measurably isomorphic to a compact metric space equipped
with a completed regular Borel measure) and suppose that (Ty)secq and (Sg)g4ec are com-
muting measure preserving G-anti-actions on X. That is to say, for each g,h € G, T, and S,
are invertible p-preserving point transformations of X, with Tgpx = Th Tz, Sgnx = SiSgx
and TySpx = SpTyx.

The anti-actions (7,) and (S,) naturally give rise to unitary G-actions on L?(u) by
the rules Ty f(x) = f(T,z) and Syf(z) = f(Sez), as, for example, Tgp f(z) = f(Tynx) =
f(ThTyx) = Thf (Tyx) = T,Thf(x). In this paper we always take L?-spaces to consist of
real-valued functions only. The assumption that (X, A, ) is a Lebesgue space implies that
L?(X, A, p) is separable and its unit ball is compact and metrizable in the weak topology.
Letting p be a minimal idempotent ultrafilter on G, therefore, we can write p-lim S, f = P f
for all f € L?(u), where convergence is in the weak topology.
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According to Theorem 2.4, P is the orthogonal projection onto a closed subspace
E C L*(X, A, p). E contains the constants, and Pf = f if and only if p-lim,||Syf — f|| = 0.
It follows that for any f € F and any [ € R the function f; defined by fi(z) =1 if f(z) > I,
filz) = —=1if f(z) < =l and fi(x) = f(x) if =1 < f(x) < [ satisfies p-lim¢||S,fi — fi|| = 0,
and hence lies in E. Thus E contains a dense subset consisting of bounded functions.
Moreover, if f, h are bounded functions in F, we have

plimg|[SyfSgh — fh|| < plimg|[SyfSgh — (Sgf)h|| + p-limg||(Sgf)l — fh||
< [[ ]l ocptimg||Sqh — i} + [[A]|  p-timg||Sy.f — fI = 0,

so that fg € F (and is bounded). Moreover f+ g is clearly a bounded member of E, so by
Theorem 2.5 E = L?(X, B, 1), where B C A is a 0-algebra, and consequently Pf = E(f|B).
We let {u, : © € X} be the disintegration of y over B and define the measure i on X x X
as noted in the previous section.

For G, (X, A, 1), (Tg)gea, (Sg)gec and p as above, our main theorem may be stated
as follows.

Theorem 3.1. For any A € A with p(A) > 0, there exists A > 0 (depending on A, (Ty)
and (Sg)) such that {g € G: p(ANT; AN (TyS,)~1A) > A} is C*.

The remainder of this section shall constitute a proof of Theorem 3.1. Fix a minimal
idempotent p and a set A € A with u(A) > 0. Let A be a positive number to be named
later and let L = p-limgu(ANT, ' AN (T,S,)"'A). We must show that L > A.

For H € L*(j1), write Q1 H = p-limy(Ty x Ty)H Q1H = p-limy(T,S, x TyS,)H (these
limits are in the weak topology of L?(f1)). By Theorem 2.4, Q; and @, are orthogonal
projections.

Definition 3.2 A function f € L*(X, A, i) is (Ty)-almost periodic over B along p if for
every € > 0 there exists a set D € B with v(D) < € and functions hy, -+, hy € L?(X, A, i)
having the property that for every 6 > 0 there exists a set C € p such that for every g € C
there is a set E(g) € B with u(E(g)) < & having the property that for allz € X\ (DUE(g))
there exists i(z,g) with 1 < i(z,g) < N such that HTgf — hi(ﬂ%g)Hm < e. (T,S4)-almost
periodicity is similarly defined.

An argument similar to the one used above to show that range P has the form
L%(X,B, 1) can be used here to show that the closure in L2(X, A, 1) of the space of func-
tions (Ty)-almost periodic over B has the form L?(X, By, p) for some o-algebra B; C A.
(One first shows that the set of functions (T})-almost periodic over B has a dense alge-
bra of bounded functions and then applies Theorem 2.5.) Moreover, one easily sees that
B C B;. Similarly, the closure of the set of (TS,)-almost periodic functions has the form
L?(X, Ba, u) for some o-algebra By with B C By C A.

For H € L*(f1), define Hx f(z) = [ H(x,t)f(t) dus(t). For almost every z, H is then
a compact linear operator on L?(u).

Lemma 3.3 Let H € L>(X x X, A® A, i) and f € L=(X, A, u).
(a) If @Q1H = H then H x f is (Ty)-almost periodic over B.
(b) If Q2H = H then H x f is (TS,)-almost periodic over B.
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Proof. We will prove (a). Part (b) is similar. Let ¢ > 0 be arbitrary and let (g;)52; be
an enumberation of G. Since H is compact on L?(u,) a.e. there exists a B-measurable
function z — M (z) into the naturals such that {H * (T, f) : 1 < i < M(z)} is £-dense
(a-e., for the metric p(g,h) = ||g — | ‘w) in the set {H =« (T, f) : g € G}.

Let N be so large that D = {z € X : M(xz) > M} € B satisfies u(D) < € and put
hi = Tg,f, 1 < i < N. Forany z € X\ D and any g € G there exists i(z,g) with
1 <i(z,g) < N such that HH *(Tyf) — hi(w,g)Hz < 5. Let now 6 > 0 be arbitary. One has

p-limy || T, (H + f) — H + (T, f)||”
— plim, / ‘ / (H(T,o, Tyt) — H(z, 1)) f(Tyt) dps(t) ‘2 dp()
< plim, / / H(Ty, Tyt) — H(a,t)|*| £ (T,)| dpaa(t) dps(a)

< pilim||(T, x T,)H - HI[2, . [|£][, = 0.

Let C ={g € G: ||Ty(Hx f) — H« (Tgf)H2 < 0(%)%. Then C € p and for every

geC, ||T,(Hx*f)— Hx (Tgf)Hj; < (£)? for every z outside of a set E(g) € B satisfying
1(E(g)) < 6. If now g € C and z € X \ (D U E(g)) then ||T,(H « f) — hi(w,Q)HQU <e. 0O

Lemma 3.4. Let f € L°(X, A, p).
(a) If E(f|B1) = 0, then p-limy||P(fT,f)|| = 0.
(b) If E(f|B2) = 0, then p-lim||P(fT,S,f)|| = 0.

Proof. Again (a) and (b) have similar proofs. This time we’ll prove (b). Since E(f|Bs) =
0, f is orthogonal to H x f for every H € L?*(X x X,A ® A, i) satisfying Q2H = H.
Therefore, if Qo H = H then

[ t@ @0 i,
— [ 1@ [ H@.070) dua(t) duto)
— [ £@)E 1) dute) = B+ 1.0) =0,
In consequence, f ® f is orthogonal to Qo H for all H € L2(fi), from which it follows that
ety || PT, 0| = el [ | [ £07,8,00) dna(t)]” duo
— plim, / F@) F )T, S, f(2)T,S, f(t) dii(, t)
- [tenerendi=o
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Lemma 3.5 If fy, fo € L°(X, A, u) with either E(f1|B1) = 0 or E(f2|B2) = 0, then
p-limg T, f1T4Sy f2 = 0 in the weak topology.

Proof. We apply Theorem 2.3. For g € G, let x4 =T, f1T;S4f2. Then
p-limp,p-limg (zgp, z4)

— ety [ T fiTSon faTy TS, 2 d
:p—limhp—limg/TgThfngThSgShnggfngng2) d,u
= p-limpp-lim, /(flThf1)Sg(f2ThShf2) dp

— plimy / P(fuTh f1) P(fs TS fo) dpt = 0,
< plimg [ |P(f1Tnh f1) - |[[P(foThShf2)|| =0

by Lemma 3.4. The desired conclusion follows from Theorem 2.3. ]

We're now ready to complete the proof of Theorem 3.1. Let f = 14, f1 = E(f|B1),
and fo = E(f|Bs). Put hy = f — f1 and he = f — fy. By Lemma 3.5

p-lim Ty f1T4Sgho
=p-limyTyh1TyS, fo
=p-limgT4h,TySghy =0

in the weak topology, from which it follows that
L =plimgu(ANT, AN (TyS,) " A)
= p-lim, / [TofTySqf dp
= p-lim, / fTg(f1+ h1)TySe(f2 + he) du

= p‘limg/ngfngng2 dp.

From the decomposition of p one sees that fi(x)fa(z) > 0 for a.e. x € A. Choose a
number ¢ > 0 and a set A’ C A with p(A’) > 0 such that fi(x)f2(z) > a for all x € A'.
Next choose b, > 0 and By € B with u(B;) = 3¢ > 0 such that for all z € By, p,(A") > b.
Then [ ffif2 dpg > ab for all z € B;.

Let € = %_ Pick ¢; that is T,-almost periodic over B and ¢, that is TS -almost
periodic over B so that for some By € B with By C B; and pu(Bs) > 2, Hfl — ‘ble <€
and Hf2 — (szx < e for all z € By. Now, by definition there are M € N, {hy,...,hp} C

L%*(X, A, ) and D € B with u(D) < ¢ such that:
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(x) For every § > 0 there exists a set C' € p such that for every g € C there is
a set E(g) € B with u(E(g)) < & such that for every z € X \ (D U E(g)) there are

i(z,g) and j(z,g) with 1 < i(z,g),j(z,g9) < M satisfying ||Ty¢1 — Z(ga’g)Hw < € and
|1 ToSgb2 — hj@g)ll, <€

Put Bz = By \ D, so that u(B3) > &, and let N = M2 + 1. We are finally ready

o N
to make the value of A\ explicit: A = ag§v2 . What we must show, therefore, is that

L = plimg [ fTyf1T4Sgf2 dp > X. In order to accomplish this, it suffices to find, for
N
arbitrary Cy € p, some g € Cy with [ fT,f1TyS,f> dp > “:552 . Accordingly, let C; € p.

N
For 6 = %, let C be as guaranteed by (x). Replacing C' by C'NC4, we may also assume
that C C Cl.

N
Let n = %. We now inductively choose g1, ...,g9n € G such that for 1 < j < N the

following are satisfied: ‘
. — — . J
(1) 4 = B3 N Nyerp(or,....a) (T; ' B3N (TySy) "' Bs) satisfies pu(A;) > €2
(ii) For all o, B C {1,...,5} witha # 0, 8 # () and a < S,

2
[|12 Tl 1 TSl ) <0
(iii) For all o, 8 C {1,...,7} with a # (), and a < S,
2
p-lim, / ‘H fo = TguSgufolly,, o = 12 = TouSefallz, s, of du(z) <

(iv) FP(g1,.-.,95) C C.
(v) For all r € FP(g1,...,9;), Cr~! € p.
Suppose that g1, ..., g; have been chosen with (i)-(v) satisfied. Observe that A; € B and

choose v > 0 so small that p(A4;) > §2j+1 + 7. Let

_ _ j+1 _
E :( N o 1) N{g:m(A;NT7MA) > €7 + )0 {g w405, 45) <}
'r‘EFP(gl,...,gj)

nen /‘Hfz— SganHTQQﬁ
a,BC{1,.. ,J} P#a<pB
=TS0 ol | ) <0}

Then E € p so we may choose g;+1 € G such that Egj_+11 € p. One now routinely checks
that (i)-(v) are satisfied for j replaced by j + 1.
Supposing that g1, ..., gn have been chosen, for non-empty «, 8 C {1,2,..., N} with

a < (3 there is a set C(a, B) € B with u(C(a, ,6’)) < % such that for all z € X \ C(«, ),
“‘f2 - Tgochaf2HTgﬁ:1; - Hf2 - TgasganHTgBSgB
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Let By = B3\ (UgeFP(g1,...,gN) E(g)) and put

Bs=Bs0( [\ (T;'Bsn(T,S,)'Bs))
gEFP(g1,...,gN)

(U BT Em u@s) Ew)).

g,hEFP(gl,...,gN)

Let us now take account of where we stand:

(i) v(Bs) > Le2".

(ii) For any = € By, [ ff1f2 dug > ab, Hf1_¢1||:1: < e and Hf2_¢2”w < €. Moreover,
for all g € FP(g1,...,9N), Hngbl — hi(w,g)Hm < € and HTgSg¢2 — hj($79)|‘z < €.

(iii) For any « € Bs and any g € FP(g1,...,9n), {Tyz,T4Sqx} C Ba.

Since N = M?% + 1, for any = € Bs there exist I(z) and m(z) (which may be
chosen B-measurable) with 1 < [(z) < m(z) < N such that z'(a:,gNgN_l---gl(m)) =
(2, gNIN=1 " Gm(z)) and j(2,9NgN-1" " Giz)) = J (@, gNIN-1" " Gm(z))- As p(Bs) >
%§2N and there are less than N? possibilities for the pair (l(:c), m(:v)), we may fix [ and

N
m with 1 <1 <m < N and a set Bg C Bs with u(Bg) > % such that [(z) = | and

m(x) =m for x € Bg. Let h = gm_19m—2---91 and g = gNgN_1"* * Gm-
Let now x € Bg. We have i(x,gh) =i(x, g). Since z ¢ (D U E(g) U E(gh),

|61 = Tun| |7, , < |[Todr — Tg(Tugn)||, + ¢
= HTg(bl - Tgh¢1”z
<|[Ty¢1 = hiwgl, + [|Tondr — hi,g)|l,
= |[Ty¢1 = Pita,g) ||, + || Tond1 — hica,gm| |, < 2¢

Also, since Tyx € Bs, H¢1 — leT », < € On the other hand, since Tgpz € B3 we have
g
[ Trhf1 — Thdrllr, = |[f1 — ¢1]|T,,2 < €. Putting it all together,

4ab
111 = Tuhillgy, < 11 = 11, 161 = Tan| |, + [ Tuds = Tafill,, <de= T2

18
Similarly, Hf2 — ThShf2HT s 5 < 4
ag~g
Let a = {l,l+1,...,m—1} and 8 = {m,m+1,..., N}. Notice that o, 8 C {1,..., N},
both are non-empty and o < 3. Moreover, observe that h = g, and g = gg. We let
N
B7 = B\ C(«, 8). Then u(By7) > & > and for every z € By, x ¢ C(«, ), which implies

4NZ
that “|f2—TgaSgaf2HTgﬂz— 12~ Ty.Sa.folly, s, | <€ But||fa=TuSuss

Therefore, ||f2 — ThShf2| ‘Tgm < be = 5%’.

Since = € Bs, Tyx € By C By. It follows by that [ ff1f2 dur,» > ab. Keeping in mind

that 0 < f, f1, fo < 1, we may conclude [ ffi1T},Shf2 dur,z > ab — 51%1’ = 1i’gb and hence

< 4e.

| |TgSga:
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[ fThf1ThShfo dur,, > 1380 —4ab — ab This holds for all # € By, so [ fThf1ThShf2 du >
N

abg?

8N2 »

as required. ]

4. Combinatorial applications.

Although Theorem 3.1 holds for general countable groups, we have density combinatorial
applications only for those groups in which Furstenberg’s correspondence principle holds,
namely amenable groups. Recall that a group G is amenable if and only if there exists a

right Fglner sequence for G, that is a sequence (®,,) of finite subsets of G such that for

|2nNPrY]
|¢n| . .

(We remark that every amenable group admits a two-sided Fglner sequence.) The presence

of Fglner sequences gives rise to the notion of density for subsets of amenable groups. If

E C G, where G is amenable, and (®,,) is a (left, right or two-sided) Fglner sequence for
G, we define the upper density of E (with respect to (®,)) by d(E) = limsup,, ”fgf'"'. (If
the limit exists, we write d(E).)

One may realize 15 as an element of the compact metrizable space Q = {0,1}¢ (with
product topology). An anti-action {T,} of G may be defined on Q as follows: for £ € €2,
let (T4€)(h) = £(gh). Furstenberg’s correspondence principle for this context may now be
formulated.

every g € G, lim,, = 1. Left and two-sided Fglner sequences are defined similarly.

Proposition 4.1. Fix some Fglner sequence sequence (®,,). Let X = {Tplg: h € G}
and put A = {n € X : n(e) = 1}. For any E C G there exists a {T},}-invariant
probability measure p on X such that pu(A) = d(E) and such that for every g1,...,gx € G,
w(T P AN---NT, A) < d(Egy'n---NEgyt).

Proof. (cf. [BM2, Theorem 2.1].) Let A be the algebra of sets generated by {T;'A: g €
G}. Passing to a subsequence of the original Fglner sequence (®,,), we may assume that
d(E) is as great as possible and that for every g1, s, -+, gx € G, d(E1g7 ' N+ N Exg ')
exists for all choices E; € {E,E¢}, 1 < i < k. Now for A, Ag,---,Ax € {A, A%} and
Jgi,---,9x € G, put ,u(Tg_llAl N---N Tg_klAk) = d(Fig; ' N---N Exgy "), where E; = E
if A;, = A and E; = E€if A; = A°. One easily checks that p extends to an additive,
{T,}-invariant set-function on A which, by compactness of X and the fact that members
of A are open, is a pre-measure. Hence u extends to a measure on the Borel o-algebra,
and this measure y plainly satisfies the desired conclusions. 0

If a group G is amenable then clearly G x G is amenable as well. (One way to see this
is by showing that for arbitrary right Fglner sequences (®,,) and (¥,,) on G, (®,, x ¥,,) is
a right Fglner sequence on G x G. )

Theorem 4.2. Let G be a countable amenable group with identity e and suppose E C
G x G has positive upper density with respect to some right Fglner sequence (®,,). Then
with respect to (®,,), for some A > 0 {g: d(ENE(g~*,e)NE(g~t,g7")) > A} is both C*
and inverse C*.

Proof. Let Q = {0,1}X% and define an anti-action (Ug,ny) on Q by U né(a,b) =
£(ga,hb). Let £ = 1p € Q and let X = {Ugné: (9,h) €GXxG}. Put A = {n €
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X :n(e,e) = 1}. According to Theorem 4.2 there exists a {U, p)}-invariant measure
poon X with u(A) = d(E) > 0 and such that for every (g1,h1),...,(gr, hx) € G x G,
pUqg AN NUG o A) < d(E(gr, )~ 0= N E(gk, hig) ™). Let Ty = Ugg,e) and
Sg =Ule,g), 9 € G. Then (T,) and (S,) are commuting measure preserving anti-actions.
By Theorem 3.1 there exists A > 0 such that {g € G : u(ANT; 1N (TyS,)"1A) > A}

is both C* and inverse C*. But p(ANT, N (TyS,) tA) = p(AN U(gle) N U(:Jlg)A) <

d(ENE(g te)NE(g',g7")), so we are done. O

Our next result is a topological multiple recurrence theorem for three commuting
anti-actions of a countable amenable group G. We do not know whether the C* conclusion
can be upgraded to IP*, nor whether the C* result holds for general countable groups.
However, a counterexample in [BH] shows at least that the IP* conclusion is false for
general countable groups.

Theorem 4.3. Let G be a countable amenable group. Suppose (X, p) is a compact metric
space, and let {Ty}, {R4}, and {Sy} be commuting anti-actions of G by homeomorphisms
of X. Then for any e > 0, the set {g € G : there exists x € X such that p(z, Ryz) <
€, p(x, RgT,x) < € and p(z, RyTySyx) < €} is C*.

Proof. Passing to a closed subset of X if necessary, we may assume that X is minimal
with respect to the G x G x G-anti-action {TyR;Sy : (9,4, h) € G x G x G}.

We claim that for every non-empty open set U C X and every minimal idempotent
ultrafilter ¢ there exists a set H € ¢ such that for all ¢ € H there exists z € X such that
{2, T4z, T4S4z} C U. To prove the claim, let U C X be open. Pick z € U and choose € > 0
such that B.(z) C U. Let Y C X be a closed set which is minimal with respect to the
G x G-action {TySh : (g9,h) € G x G}. One may check that ;. R;Y is Rg-, Tg- and Sg-
invariant, and is therefore equal to X. It follows that for some go € G, R, 'B<(x)NY # 0.
Let 6 > 0 be so small that if y;,y2 € Y with p(y1,y2) < § then p(Rg,y1, Rg,y2) < 5. Let
U' C R,'B:(z)NY be aset open in Y and of diameter less that d. Let yo € Y. Since the
action {TySh : (g,h) € G x G} is minimal on Y, the set

E={(g9,h): TySpyo € U'}

is right syndetic in G x G, and therefore we have d(E) > 0 with respect to some (in fact
any) right Fglner sequence on G x G. It follows from Theorem 4.2 that

H = {g : there exists (a,b) € G x G such that {(a,b), (ag,b), (ag,bg)} C E} € q.

For g € H, set y = T,Spyo € U’, where {(a,b), (ag,b),(ag,bg)} C E. Then Tyy € U’
and T,S,y € U', so that letting z = Rgy, we have z € B¢ (x), p(z,Ty2) < § and
p(z,TySyz) < 5. Therefore {z,Tyz,TySyz} C U, establishing the claim.

We now begin the proof of Theorem 4.3. proper. Let ¢ > 0, choose any minimal
idempotent ultrafilter p and let C' € p. Choose ¢ € X arbitrarily and let Uy be an open
set of diameter less that § containing zo. Let Hp be the member of p guaranteed by the
claim above for the open set Uy. Without loss of generality, we may assume Hy C C. Let
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ho € Hy such that Hoha1 € p and choose yy such that {yo, Th, Y0, TheSho¥o} C Up. Put
1 = R,jolyo and let Uy be an open set of diameter less that £ containing z; and having
the property that for every x € Uy we have {Rp,x, RhoTho, RhoThe Shox} C Up.

Suppose now that we have chosen open sets of diameter less that § Uy, Uy,---,U;
containing points zg, 1, - -, Ts, respectively, and hg, hy,---,hs—1 € G, such that for 0 <
m<n<t,

(1) hm,n =hp_1hpn_2---hy € C,

(ii) Chy}, € p, and

(iii) {Rhm’na:, Rhm,nThm,n:’U7 Rhm,nThm,nShm,nx} c U, for all x € U,.

Let H; be the member of p guaranteed by the claim above for the open set U;. Without
loss of generality, we may assume that H; is contained in C h,_n}n for every 0 < m <n < t.
Let h; € Hy such that H;h; ' € p. Note now that (i) and (ii) hold for n =t + 1. Now pick,
as we may by the claim, y; such that {y:, Th,vyt, Th,Sh,yt} C Us. Let x4 = R,:tlyt and
let U411 be an open set of diameter less that § containing x;; and having the property
that for all x € Uyyq one has {Rp,z, Ry, Th,x, Ry, Th, Sn,x} C Uz. (iii) now follows (recall
we deal with anti-actions, not actions) for n = ¢ + 1; that is to say, for 0 < m < ¢ and
z € Uty,

{Rhm,t+1$7 Rhm,t+1Thm,t+1x’ Rhm,t+1Thm,t+ISh’m,t+1"B} cU.

Continue until for some m < n, p(m,z,) < 5. Then
p(Tn, Rh,, ,Tn) < € p(Tn, B, ,Th,, ,Tn) <€ and p(Tn, Ra,, ,Th,, ,Shy . Tn) < €

Letting ¢ = x, and g = hp, one has g € C, p(z,Ryz) < €, p(z,RTyx) < € and
p(z, RyTyS,x) < €. Since p and C' € p were arbitrary, we are done. O

Here now is a multi-dimensional van der Waerden theorem?® for amenable groups.

Theorem 4.4. Let GG be a countable group and let p be a minimal idempotent ultrafilter
on G. For any finite partition G x G x G = J;_, C;,

{g : there exist 4, 1 <i <7, and (a,b,c) € G X G x G such
that {(a,b,c), (ag, b, c), (ag, bg, c), (ag,bg,cg)} C Cz} € p.

Proof. Let e be the identity of G. Set Q = {1,2,---,7}¢XEXG  We may choose a
metric p on Q generating the product topology such that for v,n € Q, p(v,n7) < 1
if and only if vy(e,e,e) = n(e,e,e). We define three commuting anti-actions of G by
homeomorphisms of Q as follows: Ryv(a,b,c) = v(ga,b,c), Tgy(a,b,c) = v(a, gb,c) and
Sgv(a,b,c) = v(a,b,gc). Let & be the element of 2 defined by &£(j,9,h) = i when
(4,9.h) € C;. Let X = {R;TySpé: (J,9,h) € G x G x G}. By Theorem 4.3, if one de-
notes by H the set of g € G for which there exists some z € X with p(z, Rgz) < 1,
p(z, RyTyx) < € and p(x, RgT,S4z) < €, then H € p.

8 First proved in [vdW]; states that for any k,r € N there is some n such that for any
r-cell partition of {1,2,...,n}, some cell contains a k-term arithmetic progression.
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Now, for g € H and z as guaranteed, one may pick a, b, c € G such that y = R,TpS:€
is close enough to z to ensure that p(y, Rgy) < 1, p(y, RyT,y) < 1 and p(y, RyT,S4y) < 1
as well. It follows that &£(a,b,c) = &(ag, b, c) = £(ag, by, c) = £(ag, by, cg), which is to say
{(a,b,¢), (ag,b,c), (ag, by, c), (ag,bg,cg)} C C;, where i = (a, b, c). O

At this time we would like to say a word or two about the strength of our re-
sults. In Sections 2 and 3, we required our idempotent ultrafilters to be minimal. How-
ever, the alert reader tracing the role of minimality to its source in the proof of Lemma
2.2, implication (i)—(ii), may have noticed that any idempotent p having the prop-
erty that A7'A is right syndetic for all A € p would have done just as well. For
that matter, it would be enough to require (A='A)~1(A~1A) right syndetic, or even
((A_lA)_l(A_lA))_l((A_lA)_l(A_lA)) (and so on). A fully satisfactory account of
the strength of the argument given would require a characterization of the class of idem-
potents having any of these various properties. We are not prepared to do this in general
here, however we can easily cite one simple case. If G is amenable and every member A
of an idempotent p has positive density with respect a given right Fglner sequence, then
A~1A will indeed be right syndetic. Below, we show that such ultrafilters are abundant;
even minimal ones. More to the point, there exist such ultrafilters p that aren’t minimal,
suggesting that, indeed, the proof of our main theorem actually gives somewhat more than
is claimed.

On the other hand, as a way of bounding from above what the argument actually
does yield, it is instructive to see why our proof cannot easily be modified to deal with
arbitary idempotents p. Ome crucial element of the proof of Theorem 3.1 was the last
assertion of Theorem 2.4, namely that for minimal idempotents p, U,P = PU,, where
Pf = p-lim, Uyf. (This followed from the fact that p characterized compact functions,
per Theorem 2.2.) To see that this condition need not hold for arbitrary idempotents p,
consider the following (sketch of an) example.

Let X = [0,1] x [0, 1] with Lebesgue measure and for n € N let T, : X — X be the linear
transformation which rotates each rectangle [5, 2] x [0, 1] by 90 degrees clockwise (with

corresponding vertical and horizontal scaling to make it fit), 0 < ¢ < 2". Let G be the free
group on letters y;, 2 € N, and for g = H§:1 yz_j, where e; € {—1,1}, put U, = H;Zl Ti;ej.
Then (U,) is a measure preserving anti-action of G that induces a unitary action on L?(X).
Consider the set B = [0,1] x [3,1]. It is easy to see that for any natural numbers n < m,
one has T,,T, B =T, B. 1t follows that if p is any idempotent ultrafilter supported on the
IP set generated by the y,’s, and we write Pf = p-lim,U, f, then PU, 1p = U, 1. On
the other hand, it’s pretty clear that Plp # 1p, as every T, B is actually independent
from B. Hence the identity PU, = U, P fails. L

In preparation for our final application, which refines a non-commutative Schur theo-
rem? proved in [BM2], and in the spirit of completeness, we will now justify the standard
assertion that for any amenable group G and any (right, left or two-sided) Fglner sequence

9Schur’s theorem ([S]) states that for any r € N there is some n such that for any r-cell
partition of {1,2,...,n}, some cell contains a configuration of the form {z,y,z + y}.
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(®,,), there exist ultrafilters p on G having the property that for every A € p, d(A) > 0
with respect to (®,). To this end, fix (®,) and let H be the family of subsets of G having
density 1 with respect to (®,,). It is easy to see that H is closed under intersections and
supersets, contains G' and does not contain (). In other words, H is a filter. An easy
consequence of Zorn’s lemma is that any filter is contained in some ultrafilter. Let p be
any ultrafilter containing 7. Then if A € p, A° & p, hence A® ¢ H, which is to say that
A€ does not have density 1 with respect to (®,). In other words, d(4) > 0.

In fact, for any Fglner sequence (®,) one may even find minimal idempotents, all
of whose members A satisfy d(A) > 0 with respect to (®,). To see this, let p be as in
the previous paragraph. We claim that every member of the right ideal p(8G) has the
property that all of its members have positive upper density with respect to (®,,). Indeed,
let ¢ € BG and suppose A € p-q. That is, suppose {x : Az~! € p} € q. Then, in particular,
there is some z € G such that Az~! € p, which by assumption implies d(Az~!) > 0. But
since (®,,) is a right Fglner sequence, d(A) > 0. Now simply choose a minimal right ideal
in p(BG) and an idempotent ¢ in that minimal right ideal.

We shall make use of the following well-known facts as well:

(a) Suppose E C G, and let (®,,) be a (left, right or two-sided) Fglner sequence for
G. There exists an increasing sequence (ng)ren C N such that d(F) exists with respect
to {®n, }.

(b) If G is a countable amenable group then G X G is as well. Furthermore, if (®,,) and
{¥, }nen are any two (left, right or two-sided) Fglner sequences for G then {®,, X ¥, },eN
is a (left, right or two-sided) Fglner sequence for G x G.

(¢) If G is a countable amenable group, A C G is a subgroup, and (®,) is any (left,
right or two-sided) Fglner sequence for G then d(A) (with respect to (®,,)) exists and is
equalto[G—fA]if[G:A]<ooand0if[G:A]:oo.

(d) If G is a group having two subgroups of finite index A and B then AN B is of
finite index as well. (If [G : A] = m and [G : B] = n, consider the homomorphism g —
(¢1(9), P2(g)) of G into Sy, X S, (S, being the group of permutations of the left cosets of A
and S,, being the group of permutations of the left cosets of B), where ¢1(g)(hA) = (gh)A
and ¢2(g)(hB) = (gh)B. The kernel lies in AN B.)

Theorem 4.5. Suppose that G is a countable amenable group having the property that,
letting A = {g € G : [G : C(g9)] < o}, [G : A] = co. Let (®,) be a two-sided Fglner
sequence for G’ and suppose p is an idempotent ultrafilter on G having the property that

for every A € p, d(A) > 0 with respect to (®,,). Then for every C € p there exist z,y € G
with zy # yx such that {z,y, zy,yz} C C.

Proof. That A is a subgroup of G is a consequence of (d), since C(g) N C(h) is contained
in C(gh). Let (®,) be a two-sided Fglner sequence for G with regard to which d(C) > 0.
Passing if necessary to a sub-sequence of (®,) we may by (a) assume that d(C) exists.

-1
Let (kn)nen be a sequence in N having the property that W >1- % for all

n € N and all ¢ € &, (this is possible since (®,) is a left Fglner sequence). By (b),
{®n X P, Jnen is a two-sided Fglner sequence for G x G.
For any S C G let S = {(a,b) € G x G : a~'b € S}. We claim that if d(S) exists

then d(S) (measured with respect to {®,, X Pk, }nen) exists and equals d(S). To see this,
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consider that
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~ e, 2 ey,

For any E € p, d(E) > 0 with respect to (®,), a right Fglner sequence, which
implies that E~1F is right syndetic. Hence (see discussion above) the main theorem and
its corollaries (in particular Theorem 4.2) apply to p. So, since d(é) > 0, by Theorem
4.2 there is some A > 0 such that B = {g : d(C N C(yg _l,e) N C(g _l,g_l)) > A} €p.
Since every member of p has positive upper density with respect to (<I>n) A & p, so
(B\ A) € p. Choose g € (B\ A)NnC. Since d(CNC(g7 1, )ﬂ C(g~ 1)) > A, while
d(C(g)) = d(C(g)) = 0, we may choose (a,b) € (CNC(g~t e)N C(g .97 ))\ C(g).
Then {(a,b), (ag,b), (ag,bg)} C C, which implies that {g,a_lb,g La=1b, g7 a"tbg} C C,
while = !b does not commute with g. Letting z = g and y = g~ 'a~'b, we are done. O

5. Jointly weak mixing systems of G-anti-actions.

Theorem 3.1 prompts the following natural question. Given k commuting measure pre-
serving G-anti-actions (T g(l)), 1 < i <k, on a probability space (X, A4, 1), and given A € A
with p(A) > 0, does there exist A > 0 such that

{9€G:p(An@M)TTANETOT)TTAN N (TTP - TF)TTA) > A}

is C*?

We strongly suspect the answer to this question to be yes, and are hopeful that a
proof will be not long in coming. Although there are some as-yet unresolved obstacles!?, it
is natural to imagine that the proof will incorporate elements now familiar to the ergodic
theoretic proofs of various extensions of Szemerédi’s theorem on arithmetic progressions,
such as multiple weak mixing for “jointly” weak mixing systems of G-anti-actions. !

10 The most serious obstacle is non-invariance of various naturally arising factors under
some of the G-actions. For example, if P is the projection onto the space spanned by the
(Tg(l)Tg(Q))-almost periodic functions, we see no reason why Tg(l)P = PTg(l) should hold, so
no successful adaptation of an extant proof is likely to be completely straightforward.

1 A single measure preserving anti-action (T}) is weak mixing if the only compact vectors
for the associated unitary action on L? are the constants. By a jointly weak mixing system
we essentially mean one satisfying the hypotheses of Theorem 5.1.
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In this short section, we intend to show that this step, at least, works fine. At the
same time, we will be giving an affirmative answer to the aforementioned question under
the additional joint weak mixing hypothesis.

Theorem 5.1. Let (X, A, u) be a probability space, ¥ € N and suppose that (Tg(i)),
1 < ¢ <k, are anti-actions of G by measure preserving transformations of X. Let p € G be

a minimial idempotent and suppose that for all 1 <4 < j <k, the anti-action ( {m- Tét))
is weak mixing. Then for f; € L*°(X), 0<i <k,

k
p-lim, / Fo(TgD f)TTR) fo) - - (TVTE - T§E fr) dp = [ | / fi dp.
1=0

Proof. As is standard, we make use under the integral of the identity Hf:o a; — Hf:o b; =
(a0 —bo)by - -+ b +ao(ar —b1)bo -« by ++-+ag - - ax_1(ar — by), with a; = (H;=1 Tg(j))fi
and b; = [ f; dp. This allows us to assume, without loss of generality, that [ f; du = 0 for
some 2, 0 <1 < k.

The proof is by induction on k. If £k = 1, let P = p—limng(l) in the weak operator
topology. By Theorem 2.4, P is an orthogonal projection, and by Theorem 2.2 and the
fact that (Tg(l)) is weak mixing, P is in fact the projection onto the constants. In other
words, p-lim,T¢" f1 = [ f1 du weakly, from which it follows that p-limg [ foTs" f1 dp =

([ fodu)( [ f1du), as desired.
Suppose now that the result holds for £ — 1. We employ Theorem 2.3. For g € G, let

zg = (T3 f1)(TOTP fo) - (TOTEP -+ TP f1). Then
(Tghs Tg)
= /(Tg(}lL)fl)(Tg(flb)Tg(i)fz) e (Tg(flL)Tg(i) - ‘Tg(Z)fk)
(T ANTOTP fo) - (TOTE - TP fr) dp

= / (T ) TOTS o) - (TITR - TR ) (F)TP f2) - (T2 - TP f) dp

= [ (2 R T BT (R TOTY )
Tg(2)Tg(3) .. .Tg(k) (flegl)Tf?) .. .ngk)fk) du.

Applying now the induction hypothesis in the inner limit and the £ = 1 case in the outer,
using the fact that [ f; du = 0 for some 1,

p-limpp-limg (zgp, z4)

:p—limh( / ATV £ d,u)( / £TOT? £, d,u> ( / HTOT® T, du) —0.

Now the conclusion of Theorem 2.3 gives p-limgz, = 0 weakly, so that in particular
plimy [ fo(T) P)TVT f) - - (TOT - T i) dw = 0, as required. O
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Taking f; = 14, 0 <14 < k, the following is now immediate.

Corollary 5.2. Let (X,.A, u) be a probability space, ¥ € N and suppose that (Té’)),
1 <4 < k, are anti-actions of G by measure preserving transformations of X. Suppose
that for all 1 < i < j <k, the anti-action ( {:i Tg(t)) is weak mixing. Then for any A € A
with u(A) > 0 and any € > 0, the set

{g €G- |IJJ(Aﬂ (Tg(l))_lAﬂ (Tg(l)Tg(Q))_lAﬂ- N (Tg(l)Tg(Q) .. -Tg(k))_lA) _M(A)k+1| < e}
is C*.
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