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1. Introduction

This note is concerned with the topological, measure theoretical and combinatorial
aspects of recurrence and their interplay. The classical Poincaré recurrence theorem asserts
that for any finite measure preserving system (X, B, 1, T') and any set A € B with u(A) > 0,
p-almost every point z € A returns to A under a power of the transformation 7', that is
p({z € A : there exists n € N with T"z € A}) = p(A). This result, which deals with
recurrence of points, can easily be obtained from a result dealing with recurrence of sets:
if 4(A) > 0 then for some n € N one has u(ANT~™A) > 0. It is the recurrence of sets in
measure preserving, topological and combinatorial set-ups which will be the focus of our
attention in this paper. (A standing exercise, which we offer to the reader, is to detect the
recurrence of points lying in the background.)

A far-reaching refinement of the Poincaré recurrence theorem was obtained by Fursten-
berg in [F1]: for any finite measure preserving system (X,B,u,T), any A € B with
p(A) > 0, and any k € N there exists n € N such that p(ANT"AN---NTF"4) > 0.
In the same paper Furstenberg showed that this multiple recurrence theorem implies Sze-
merédi’s celebrated theorem on arithmetic progressions ([Sz]), thereby establishing a fruit-
ful and mutually perpetuating link between ergodic theory and density Ramsey theory.

In [FW] Furstenberg and Weiss established a similar link between topological dy-
namics and partition Ramsey theory, which deals with theorems like van der Waerden’s,
Hindman’s, etc. (see [GRS] for background; see also [F2] and [B2]). For example, one of
the results in [FW] asserts that for any continuous self-mapping T of a compact metric
space X, any k € N, and any € > 0, there exists x € X and n € N such that the diameter
of the set {z,T"z,---,T*"x} is smaller than e. This result implies van der Waerden’s
theorem on arithmetic progressions, which is the natural counterpart in partition Ramsey
theory to Szemerédi’s theorem. Again, this result about recurrence of points follows from
a corresponding result about recurrence of sets: if (X, T') is a minimal dynamical system,
then for any k¥ € N and any non-empty open set U one has UNT"UN---NT~*U £ ()
for some n € N. Alternatively: if (X,T) is a (not necessarily minimal) dynamical system
and {Uq,---,U;} is an open cover of X then for some i, 1 < ¢ < ¢, and some n € N one
has U;NnT~"U; N ---N T_k"Ui # 0.

While the measurable and topological multiple recurrence results alluded to provide
one with strong Ramsey-theoretical results, already there are some interesting questions
and results concerning the relationship between these two modes of recurrence for the
single recurrence case. A good illustration is given by a result due to Kriz ([K]), which
we now describe. In an attempt to better understand the connection between results of
density Ramsey theory and their counterparts in partition Ramsey theory, the first author
asked whether it is true that if R is a shift-invariant family of finite sets in N having the
property that some member of R can always be found in one cell of an arbitrary finite
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partition of N, then any set of positive upper density in N contains a member of R. Kriz
demonstrated the answer to be no.

To more fully elucidate what he proved, we will introduce two notions. First, let a
subset R of N be called density intersective provided that for every A C N with d(A4) > 0
there exists n € R such that AN(A—n) # 0. R will be called chromatically intersective if
for every partition of N into r cells, one of the cells, call it C, satisfies C N (C —n) # () for
some n € R. What Kriz did was construct a chromatically intersective set R which is not
density intersective. Letting then R be the set of configurations {a,a + n}, where n € R
and a € N, R is easily seen to indeed be a shift-invariant class having the property that
for every finite partition of N, some cell contains a member of R, yet there exists a set A
with d(A) > 0 which does not contain a member of R.

Due to the aforementioned connection between ergodic theory and density combina-
torics (see also Theorem 2.1), one may show that a set R C N is density intersective if
and only if for every measure preserving transformation 7' of a probability space (X, B, y)
and every A € B with u(A) > 0 there exists n € R such that y(ANT~"A) > 0. For this
reason, density intersective sets are also called sets of measurable recurrence. Similarly,
the connection between Ramsey theory and topological dynamics provides a dynamically
formulated condition equivalent to that of being a set of chromatic intersectivity. There
are several equivalent forms, however the one most commonly used ([Fo], [M]) has been
the following: R is chromatically intersective if and only if for every invertible, minimal
dynamical system (X, T'), where X is a compact metric space, and every non-empty open
set U, there exists n € R such that U N T~ "U # (). For this reason, chromatically inter-
sective sets in N are also called sets of topological recurrence. Thus, the set constructed
by Kriz is a set of topological recurrence which is not a set of measurable recurrence.

One of our purposes is to extend these notions, defined here in N, to arbitrary count-
able semigroups S, exploring their interrelationships both with each other and with com-
binatorics. We remark that most of the definitions and results of this paper make sense for
actions of uncountable discrete semigroups S (in other words, actions with no continuity
restrictions), however we do not pursue this notion, in part because we have no combina-
torial results for uncountable semigroups which are not already obtainable as corollaries
of results for countable semigroups.

Moreover, usually when one considers actions of uncountable semigroups, these actions
are taken to be continuous with respect to some given topology, and for this reason there
may be some cause for confusion in what should be considered a set of recurrence in a group
such as R. Indeed, by [BBB, p.43] for any « > 0, any continuous measure preserving flow
{T; : t € R} on a probability space (X, B, u) and any A € B with u(A) > 0 there exists
n € N such that y(ANTpaA) > 0. On the other hand, for all but countably many «,
{n® : n € N} is linearly independent over Q (see [BBB, Lemma 2.9 and Remark on p.
38]). For such an a > 1, [BBB, Theorem D] allows one to find a measurable set £ C R
such that

d(E) = Tim TENL) 1

t—oo t 2
and EN(E —n®) = for all n € N. Using the methods of Section 2 (namely the proof of
Theorem 2.1, which works for uncountable discrete semigroups) one may use this example
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to construct a (non-continuous!) measure preserving R-action {T,},cr on a probability
space (X, B, p) such that for some A € B with p(A) > 0 we have (AN T,«A) = 0 for
all n € N. Therefore, whether or not one should call {n® : n € N} a set of measurable
recurrence appears to be a matter of perspective. This is another reason we choose not to
pursue this issue here.

Definition 1.1 Let S be a countable semigroup and suppose R C S.

(a) R is called a set of measurable recurrence if for every measure preserving S-action
{Ty}4es on a probability space (X, B, u) and every A € B satisfying pu(A) > 0 we have
n(ANT,A) > 0 for some g € R.

(b) R is called a set of topological recurrence if for every minimal S-action {T,}ges
by continuous self-mappings of a compact metric space X and every open set U we have
UNT, U # 0 for some g € R.

Unfortunately, for non-abelian semigroups S the property of Definition 1.1 (b) is not
what is needed for the Ramsey theoretic connection. The correct notion, which for abelian
semigroups (but not in general) is easily shown (see Theorem 2.6 (b)) to be equivalent, is
the following.

Definition 1.2 A subset R of a countable semigroup S is called a set of chromatic
recurrence if for every S-action {T,}4es by continuous self-mappings of a compact metric
space X and every open covering {Uy, - --,U,} of X there exists ¢ with 1 < i < r such that
U; ﬂTg_lUi # () for some g € R.

Remark. Our definitions of sets of recurrence are such that if S contains an identity
e then {e} is automatically a set of recurrence. This is a departure from the definition of
sets of recurrence for S = Z given in [F2], in which R is a set of recurrence if and only if
R\ {0} is a set of recurrence. We are changing things a little for the sake of convenience.
The difference, of course, is more philosophical than actual.

Equivalent combinatorial formulations of each of these three types of sets of recurrence
are given in Section 2. For sets of topological recurrence and sets of chromatic recurrence,
these equivalences hold for all countable semigroups S, however for sets of measurable
recurrence the equivalence is only valid in the event that S is countable and left amenable.
We then show that sets of topological recurrence are always sets of chromatic recurrence,
and that for countable left amenable semigroups sets of measurable recurrence are always
sets of topological recurrence. Meanwhile, since for abelian semigroups chromatic and
topological recurrence are equivalent, [K] provides us with a set of chromatic recurrence
which is not a set of measurable recurrence.

The reason sets of measurable recurrence in countable left amenable semigroups must
also be sets of topological recurrence is that for any action of such a semigroup S by
continuous self-mappings of a compact metric space X, there exists an invariant measure.
For non-amenable (semi)groups, no such measure is guaranteed, removing any a priori
reason why a set of measurable recurrence should be a set of topological recurrence. Indeed,
one may almost effortlessly find sets of measurable recurrence in free groups which are not
sets of topological recurrence (see Theorem 2.6 (¢)). A more interesting question is whether
one may find sets of measurable recurrence which are not sets of chromatic recurrence.
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There is some evidence (Theorem 4.5) which suggests that there may be such examples,
but as of now we haven’t found any. Section 4 is a short section devoted to expounding
upon this and various other open questions, a few of which pertain to multiple recurrence.

Section 3 contains a non-commutative version of Schur’s theorem. Recall that given a
finite partition of a semigroup S, S = (J._, C;, one of the cells C; contains a configuration
of the form {z,y, zy}. This result, which in the case S = (N, +) is due to Schur (see [S],
[GRS]), has interesting consequences in number theory (cf. [Si], [B1]).

Schur’s theorem is extended considerably by the following marvelous theorem of Hind-
man ([H]): for any finite partition of a semigroup S there is a sequence {z;};en with the
property that all its elements together with all finite products of the form z; x;, - - - z;,,
where k£ € N is arbitrary and i; < - < ig, belong to the same cell of the partition.

We use a result about double recurrence recently obtained in [BMZ] to advance Schur’s
theorem in a non-commutative direction. Namely, we address the following question in-
spired by Hindman’s theorem and stemming from the general philosophy of Ramsey the-
ory: Is it true that for any finite partition of any “sufficiently non-commutative” group and
any natural number k£, one of the cells of the partition contains pairwise non-commuting
elements x1,-- -,z together with all possible products z;, ;, - - - x;,, (where i, # i for
r # t)? The vague formulation (“sufficiently non-commutative”) we have given is inten-
tionally open-ended, however at this stage its meaning for us is that, letting A be the
subgroup (to see that A is in fact a subgroup, see the beginning of the proof of Theorem
3.4 in Section 3) of G consisting of all elements x such that [G : C(z)] < oo, where C(z)
is the centralizer of z, we have [G : A] = co. In other words, there are neglectably few
elements which commute with many elements of G. For amenable groups at least, this
seems to be appropriate. Plenty of countable amenable groups satisfy this condition, for
example the Heisenberg group and the group S, of finite permutations of N. Indeed,
we know of no example of a countable amenable group G having no abelian subgroups of
finite index which fails the condition. At any rate, our modest contribution to the question
introduced above is the following theorem.

Theorem 3.4 Suppose that G is a countable amenable group and that G = U;":l C;
is a finite partition. Let A = {g € G : [G : C(g)] < oo}. If [G : A] = oo then there exist
z,y € G and i, 1 <i <r, with zy # yzr and such that {z,y, zy,yz} C C;.

Although on the face of it this theorem belongs strictly to partition Ramsey theory,
it belongs to a sub-class of results in this field for which we have at present no proof which
avoids ergodic theory (see [BMZ, Corollary 7.2] for another). In Section 5 we offer a very
short philosophical discussion which hints at some of the reasons for this phenomenon (at
least in non-abelian groups) by indicating where the available topological methods fail.

2. Combinatorial formulations of and relationships between the various
types.

In this section we will formulate equivalent combinatorial conditions for the three
kinds of sets of recurrence defined in Section 1. Then, we will point out a few of the
inclusive and exclusive relationships these concepts have with each other. First we handle
sets of measurable recurrence. To this end, we give a general form of a correspondence
principle due to Furstenberg which is valid for countable left amenable semigroups. Recall
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that a semigroup S is left amenable if there exists a left invariant mean m on [°°(S).
Namely, m is a member of [°°(S)* with m(1) =1, m(g) > 0 if g(s) > 0 for all s € S, and
m(sg) = m(g) for all s € S (where g(t) = g(st)). Given a left invariant mean m € [*°(S)*
and F C S, we will follow convention and write m(F) for m(1g). Written this way, m
becomes a finitely additive, shift invariant (i.e. m(s™1E) = m(E) foralls € S and E C S,
where s™'E = {g € S : sg € E}) probability measure on P(S), the power set of S.

Theorem 2.1 Let S be a countable left amenable semigroup, let m be a left invariant
mean and suppose A C S. There exists a probability space (X,B,u) (X is in fact a
compact metric space and B is the o-algebra of Borel sets), a set U € B (which is open
and closed), and a measure preserving S-action {T;}ses on X (the transformations are
continuous) such that for every hq,---, hy € S we have

wTUNTMUN--NTU) =m(hy PANhy PAN -0 R HA). (2.1)

Proof. By adding it if necessary we will assume that S contains an identity e. Let
X =H{o, 1}5 . With the product topology, X is compact and metric. Let C be the collection
of cylinder sets, that is sets of the form

C = {’Y € X: ’Y(hl) = 61,’}/(h2) = €9, ,’)’(hk) = Gk}, (22)

where k € N, h; € S are distinct and ¢; € {0,1}, 1 < i < k. Note that C is closed under
finite intersections. Let A be the algebra generated by C, that is, the set of finite unions
of members of C. For C € C given by (2.2), let A(C) = m(hi A1 Nhy A2 N ---N A T Ay),
where A; = Aife; =1 and A; = A°if ¢, = 0,1 < i < k. One easily checks (due to
additivity of m) that if C; and Cy are disjoint members of C and (Cy; U C3) € C then
A(C1 U Cy) = A(Ch) + A(C3). Tt follows that A may be extended to a finitely additive set
function on A. Furthermore, every member of A is both open and closed in X. Therefore
if (B;)2, is a sequence of pairwise disjoint members of A whose union lies in A then by
compactness all but finitely many of the sets B; must be empty. In particular, A(|J B;) =
> A(B;). It follows that A is a premeasure on A and hence extends to a measure p on the
o-algebra B of Borel sets. One easily checks that, due to invariance of m, p is invariant
under the shift action {7 }4c5, where T,v(h) = v(hg), v € X, h,g € S (it suffices to check
this on A). Finally we let U = {y € X : v(e) = 1}. Then

T UNT U N NT0) = p({y € X s y(hn) = 1,7(he) =1, -, v(hy) = 1})
=m(hi'Anhy'An---nhtA).

O

This in hand, we are able to give combinatorial necessary and sufficient conditions
for a set R to be a set of measurable recurrence. These conditions involve the return of
a “large” set A C S to itself, in the sense that AN g=1A # () for some g € R. (See also
Theorem 3.2 and the discussion following Definition 4.1.)
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Theorem 2.2 Suppose that S is a countable left amenable semigroup. Then R C S
is a set of measurable recurrence if and only if for every left invariant mean m and every

A C S with m(A) > 0 we have ANg~tA # ) for some g € R.

Proof. (=) Suppose m is a left invariant mean and A C S with m(A) > 0. Let
(X, B, ) and U € B be as guaranteed by Theorem 2.1. In particular, (2.1) holds. Since R
is a set of measurable recurrence there exists g € R such that u(UNT, 1U) > 0. Therefore
by (2.1) m(Ang=tA) > 0.

(<) Let {Ty}4es be a measure preserving S-action on a probability space (X, B, 1) and
suppose that U € B with u(U) > 0. Delete from X every set of the form U N T, LU which
is of measure 0, g € S. The reason we are doing this is that in the space which remains,
UNT,;'U # 0 implies u(UNT, 'U) > 0. For every x € X, let E, ={ge€ S:x € T, 'U}.
We claim that m(E;) > 0 for some x € X and some left invariant mean m. Supposing
the claim to be valid, by hypothesis there exists g € R such that E, Ng~'E, # (. Letting
k€ E, Ng 'E,, we have Tyz € U and Typx € U, so that Tyz € U N Tg_lU. According to
our earlier stipulation, u(UNT, . 1) > 0. Therefore, all we must do is establish the claim.

We take [1(S) to consist of functions f : S — R satisfying

1F11= D 1f(s)] < ce.

sES

Members f of I1(S) induce elements f of 1°°(S)* by the formula,

flg)=>_f(s)g(s), g€l®(S).

seS

Let @ C I'(S) consist of all functions f : S — [0,1] such that {s : f(s) > 0} is finite and
Y ses f(s) =1. Forall f € ® one has f(1) =1 and f(g) > 0if g > 0, hence members of ®
are called finite means. For s € S and f € ®, define s f € ® by s* f(t) = Z{hzsh:t} f(h).
A theorem of Day ([D]) states that left amenability of S is equivalent to existence of a net
(fy) C @ satisfying lim, ||s * fy — fy|| = 0. Using the fact that S is countable, one can
assume this net to be a sequence (f;){2;. . .

For E C S, let m(E) = limsup,,_, ., fn(E) (by fn(E) we mean f,(1g) = > cg fu(8))-
Suppose for some z € X we were to have m(E;) > 0. Then for some increasing sequence
(ng) C N, limg, fr, (F) > 0 and letting m be any weak-* limit point of { f,, }32, in {*°(S)*,
m will be a left invariant mean satisfying m(F;) > 0, completing the proof. We have
therefore reduced the problem to finding z with m(E;) > 0.

Suppose then that m(E,) = 0 for all z € X (we will arrive at a contradiction). For
every x there exists some least number n, € N having the property that for all n > n,
we have fn(Em) < @ That n, is a measurable function of x follows from the fact that

z — fo(Ey) = Y wery fn(s) is measurable for each n. Let no € N have the property

that p({z : ny > np}) < @ For every n > ng, we have

/ FuEy) dta) < M0 MO _ )

6



On the other hand,

[ R dute) = [ 3 1l dute)

seFE,

~ [ £a(6)15.5) duts)

sES

— [ X £u@ 1) duta)
ses
= Y Fu(lTs V) = w0,

seS

This contradiction completes the proof.
O

Thus we see that sets of positive measure return to themselves under R if and only
if sets of positive density return to themselves in the sense that A N g='A # () for some
g € R. (Of course for Z-actions this is already well known and Theorem 2.2 is a routine
extension of this fact.) For topological recurrence we need a different notion of largeness
for subsets of S, namely that of syndeticity. A subset of E of N is said to be syndetic if
it has bounded gaps. Equivalently, £ C N is syndetic if N is the union of finitely many
shifts of E. For non-abelian semigroups, there are two versions of syndeticity, namely left
and right, depending on which direction one shifts from. An idea related to syndeticity
is that of thickness. In an abelian semigroup, a set is thick if it contains a shifted copy
of every finite configuration (hence in Z a set is thick if and only if it contains arbitrarily
long intervals). For non-abelian semigroups there are again two versions. Since we deal
with left semigroup actions, left syndeticity and left thickness are the right notions for us
(irony unintended).

Definition 2.3 Let S be a countable semigroup and suppose E C S.

(a) E is said to be left (respectively right) syndetic if there exists a finite set H C S
such that S = J,c gy t7'E (respectively S =, Et™).

(b) E is said to be left (respectively right) thick if for every finite set H C S there
exists « € S such that Hx C F (respectively zH C E).

It is easy to show that E is left (respectively right) syndetic if and only if E€ fails
to be left (respectively right) thick. This observation is used in our next proof, as is the
well-known fact that if {T;},ecs is an S-action by continuous self-mappings of a compact
space Y then there exists a closed set X C Y which is invariant (i.e. T;X C X for all
g € S) and with respect to which {T;}4cs is minimal. That is, if W C X is a closed
invariant set then W =X or W =0

Theorem 2.4 In a countable semigroup S, a set R is a set of topological recurrence
if and only if for every left syndetic set A C S there exists g € R such that AN g=1A # .

Proof. (=) Let A C S be left syndetic. By adjoining one if necessary, we will assume
that S has an identity e. Put Z = {0,1}°. Endowed with the product topology, Z is
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a compact metric space. A left S-action {T,}4es by continuous self-mappings of Z may
be given by Tyy(h) = v(hg), v € Z. Let Y = {Tyls:9 € S}. One easily checks that
Y is S-invariant. Choose a closed invariant set X C Y with respect to which the action
{Ty}ges is minimal. Let U = {y € X : y(e) = 1}. U is clearly open in X. We claim it is
also non-empty. Indeed, for any v € X, Tyy € U for some g € S. Equivalently, y(g) =1
for some g € S, that is, the function which sends every element of S to 0 does not lie in
X. Otherwise, for every finite set H C S there would exist k € G such that Tp14(s) =0
for all s € H, in other words Hk C A€, which since H is arbitrary is to say that A° is left
thick, a contradiction. This establishes the claim. Since U is non-empty, and R is a set of
topological recurrence, there exists g € R such that U N T U # (. In particular, there
exists v € Y and g € R such that vy(e) = v(g) = 1, which implies that for some h € S we
have T,14(e) = Tp14(g) = 1, meaning that h and gh lie in A. That is, h € AN g tA.
(<) Let {T,}4es be a minimal S-action on a compact metric space X and let U C X
be open. There exists a finite set H C S such that X = J, .y Th_lU. Let x € X and put
E={g€S:T,z € U}. Notice that for every g € S we have T,z € Th_lU for some h € H,
that is Thgz € U, which is to say g € h™'E. Hence S = Uner h~'E, so that in particular
E is left syndetic and by hypothesis there exists g € R such that EN T, 'E # (. Let
a € ENT,'E and put z = Tox. Then z € U and Tyz € U. In other words, z € UNT, 'U.

Finally, here is the equivalence result for sets of chromatic recurrence.

Theorem 2.5 In a countable semigroup S, a set R is a set of chromatic recurrence
if and only if for every partition of S into finitely many cells Aq,---, A, there exists 1,
1 < i <r such that A; g~ 'A; # () for some g € R.

Proof. (=) Suppose a partition S = A; U---U A, is given. If S contains an identity,
call it e and let A,11 = (. Otherwise, adjoin an identity e to S and put A,11 = {e}.
Let Z = {1,2,---,7 + 1} and define v € Z by v(g) = i if and only if g € A;. Let
X ={T,y:9 € S}, where Tya(h) = a(hg), g € S, o € Z. Then X is S-invariant. Let
Uy ={ae X :ae) =i}, 1 <i<r+1. Then {Uy,---,U,41} is an open covering of X.
Since R is a set of chromatic recurrence, there exists 7, 1 <7 <r+1, and g € R such that
Ui N T, 'U; # 0. This implies that Tyy € U; N Ty 'U; for some k € S. Hence k € A; and
gk € A;, that is, k € A;Ng~YA;. If i #r+ 1 we are done, but if i = r + 1 then k = g = e,
a contradiction since g € R C J,_, 4;.

(<) Let {Ty}ges be an S-action by continuous self-mappings of a compact metric
space X and suppose that {Uy,---,U,} is an open covering. Let x € X and for every
g € S let iy be the minimal ¢ such that T,z € U;. Let A; = {g € S : ig = ¢}. Then
S =A,U---U A, is a finite partition. By hypothesis, there exists 7, 1 <7 <r,and g € R
such that A; Ng~tA; #0. Let k € A;Ng~'A;. Then Tyz € U; and Tyrz € U;. 1t follows
that Tye € U; N Ty 'U;.

O

The following theorem indicates in part the relative strength of the three notions of
sets of recurrence we have defined.

Theorem 2.6 Suppose that S is a countable semigroup and R C S.
(a) If R is a set of topological recurrence then R is a set of chromatic recurrence.
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(b) If R is a set of chromatic recurrence and R C Z(S) ={s€ S : st =ts for all t € S}
(in particular, if S is abelian) then R is a set of topological recurrence.

(c) There exists an example where S is a group and R is both a set of measurable
recurrence and a set of chromatic recurrence, but R is not a set of topological recurrence.

(d) If R is a set of measurable recurrence and S is left amenable then R is both a set
of topological recurrence and a set of chromatic recurrence.

(e) There exists an example in which S = N, R is both a set of topological recurrence
and a set of chromatic recurrence, but R is not a set of measurable recurrence.

Proof. (a) Suppose that {T,}4es is an S-action by continuous self-mappings of a
compact metric space X and suppose that {Ui,---,U,} is an open covering of X. Let
Y C X be a minimal invariant set. For some ¢ we have U = Y NU; # (). Since R is a
set of topological recurrence and U is a non-empty open subset of Y, U N T, U # § for
some g € R. Clearly we have U; N T LU; # 0 as well. (The reader is urged to supply an
alternative proof of (a) using the equivalent combinatorial characterizations of Theorems
2.4 and 2.5.)

(b) Suppose that R is a set of chromatic recurrence contained in Z(S) and that L C S
is left syndetic. Then there exists a finite set H C S such that S = (J,,c g h~1L. Since Ris a
set of chromatic recurrence there exist h € H and g € R such that (h"1L)Ng~t(h~1L) # 0.
Let k € (hm'L)Nng Y(h~'L). Then hk € L and hgk € L. But g commutes with A, so
hk € LN g~'L. By Theorem 2.4, R is a set of topological recurrence.

(c) Let S be the free group on the letters a and b and let R be the set {a* : k € N}.
Let S= A;U---U A, be any partition of S and choose m < n such that a™ and a” lie in
the same cell A;. Then a™ € A; N (a”_m)_lAi. This shows that R is a set of chromatic
recurrence. Let {T,},ecs be a measure preserving S-action of a probability space (X, B, p)
and suppose U € B with u(U) > 0. Choose m < n with u(T,»U NT,.'U) > 0. Then
p(U ﬂTa_nl,m U) > 0. This shows that R is a set of measurable recurrence. To see that R is
not a set of topological recurrence, consider the left syndetic set B consisting of all words
that begin with either b or b=1. Clearly BN (a*)~™1B = () for all k € N. By Theorem 2.4

R cannot be a set of topological recurrence.

(d) Suppose that R is a set of measurable recurrence and S is left amenable. Let m be a
left invariant mean and suppose L C S is left syndetic. For some finite set {h1,---, hp} C S,
S =i, h; 'L. We must have m(L) > 1. Since R is a set of measurable recurrence, by
Theorem 2.2 there exists g € R such that LN gL # (). Therefore by Theorem 2.4 R is a
set of topological recurrence and by (a) a set of chromatic recurrence as well.

(e) This non-trivial result, mentioned in the introduction, is due to Kriz ([K], see also
[Fo] and [M]).

O

We now see that, while sets of measurable recurrence and sets of chromatic recurrence
are partition regular, sets of topological recurrence are not.

Theorem 2.7 Let S be a countable semigroup. Suppose Ri, Ra,---, R C S and let
R=R,URsU---URy.



(a) If R is a set of measurable recurrence then R; is a set of measurable recurrence
for some 7, 1 <1 < k.

(b) If R is a set of chromatic recurrence then R; is a set of chromatic recurrence for
some 2, 1 <1 < k.

(c) There exists an example in which S is a group, R is a set of topological recurrence
and no R; is a set of topological recurrence, 1 <1 < k.

Proof. (a) Suppose not. Then there exist probability spaces (X;, B;, i), positive
measure sets A; € B;, and measure preserving S-actions {Tg(z)}geg such that

pi(A N (T) 1 A;) =0, ge Ry, 1<i<F.

Let X = Hle Xi, p = Hle Li, Tg = Hle Tg(i) and put A = Hle A;. Then p(A) >0
and yet u(ANT, LA) =0 for all g € R, a contradiction.

(b) Suppose not. Then there exist S-actions {T g(i)}ges by continuous self-mappings
of compact metric spaces X;, and open covers {Ul(z), e Ut(;)} of X; such that

v 0 (@)U =0, 1<i<h 1<j<t, g€ R,

Let X = Hle X, Ty = Hle Tg(i) and let U be the open cover of X consisting of sets of
the form Hle U;;), where 1 < j; < t;, 1 <1t < k. Then for every U € U and every g € R
we have U N Tg_lU = (), a contradiction.

(c) Let S be the free group on the letters {g, h,k}. R =S\ {e} is left thick and hence
a set of topological recurrence (see Example 4.4 (b)). If wy, wy € R, let wy ~ ws if the first
letter of wy in its reduced form is the same as or the inverse of the first letter of ws in its
reduced form, and if the last letter of w; in its reduced form is the same as or the inverse
of the last letter of ws in its reduced form. Let Ry, ---, Rg be the set of equivalence classes
under ~. Given 7, 1 <3 < 9, one easily finds a left syndetic set L such that LN g~ 'L = ()
for all ¢ € R;. For example, suppose that R; is the set of words beginning with g or g—!
and ending with h or h~!. Let L be the set of words beginning with k or k=1. L is left
syndetic, but LN g~ 'L = () for g € R;. By Theorem 2.5 none of the sets R; is a set of
topological recurrence.

O

Remark. At this stage the alert reader may wonder why we even care about sets of
“topological recurrence”. Insofar as they fail to provide a connection to partition Ramsey
theory, and insofar as they fail to possess many of the good properties of their counterparts,
sets of measurable recurrence and sets of chromatic recurrence, they may appear in many
ways to be a useless and inappropriate idea. Nevertheless, we have our reasons, which will
be very briefly expounded upon in Section 5.

We now move to discussion which will serve as a preparation for the non-commutative
Schur theorem we aim to prove in the next section. Schur’s theorem, which states that
for any finite coloring of a semigroup S a configuration of the type {z,y,zy} can be found
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in one color, has been given many different proofs. Schur’s original method ([S], see also
[Si], [H]) employed counting techniques. Another way is to use Ramsey’s theorem. A proof
along these lines may be found in [GRS]. A third idea is to derive Schur’s theorem as a
consequence of Hindman’s theorem or its proof, for example by using the existence of an
idempotent ultrafilter in 8S.

We do not see any way to generalize any of these methods to get {z,y,zy, yz} in one
color with zy # yxz. Counsider, however, the following proof of Schur’s theorem which uses
partition regularity of sets of recurrence and is valid for countable amenable semigroups
(this proof is an adaptation of the proof of a density Schur theorem in [B1]): Suppose
S = UZ=1 C; is a finite partition of a countable, left amenable semigroup S and let m be a
left invariant mean. Renumbering if necessary we may assume that there exists rg such that
m(C;) > 0 when 1 < i < rg, and m(C;) = 0 when ry < i < r. Then m(J,_, C;) =1, so
that in particular |J,_, C; is left thick ([P, Proposition 1.21]) and hence a set of measurable
recurrence (Example 4.4 (a) gives something even stronger). By Theorem 2.7 (a), therefore,
there exists ¢ with 1 <7 < rg such that Cj is a set of measurable recurrence. In particular,
by Theorem 2.2 we have C; N 2= *C; # () for some z € C;. Letting y € C; Nz~ 1C;, one
obtains {z,y,zy} C C;.

The preceding proof uses a recurrence fact, namely the fact that left thick sets are
sets of measurable recurrence. The proof in the next section substitutes for this assertion
the following stronger result from [BMZ]: in amenable groups, left thick sets are sets of
measurable double recurrence. What exactly this means will be explained presently.

3. Double recurrence and a non-commutative Schur theorem.

A special case of Szemerédi’s theorem due to K. Roth ([R]) asserts that if £ C N has
positive upper density then E contains an arithmetic progression of length 3. Roth’s the-
orem is easily shown via Furstenberg correspondence to be a consequence of the following
double recurrence strengthening of the Poincaré recurrence theorem: for any finite measure
preserving system (X, B, u,T) and any A € B with p(A) > 0 there exists n € N such that
p(ANT "ANT 2"A) > 0. This of course is a special case of Furstenberg’s multiple
recurrence theorem, however it may also be obtained (see [F1], [F2]) as a consequence
of what Furstenberg calls the ergodic Roth theorem, which asserts that % 22;1 T fT?"g
converges in L?(X, B, u) for all f,g € L>°(X, B, 1) and identifies the limit.

The phenomenon of double recurrence prompts the question of which sets it occurs
along. In the following definition and elsewhere, we take two S-actions {T,}secs and
{Sg}4es to be commuting if TSy, = SpT, for all g, h € S.

Definition 3.1 Let R be a subset of a countable semigroup S. R is called a set of
measurable 2-recurrence if for any pair of commuting measure preserving S-actions {7, }4es
and {S,}4es on a probability space (X, B, 1) and every A € B with p(A) > 0 there exists
g € R such that

WANT,; VAN (T,S,) 7 A) > 0. (3.1)

Like sets of single measurable recurrence, this notion has an equivalent, combinatorial
formulation which may be proved by methods similar to those used for Theorem 2.2.

11



Theorem 3.2 Let R C S, where S is a countable left amenable semigroup. R
is a set of measurable 2-recurrence if and only if for every left invariant mean m on
[°(S x S) and every A C S x S with m(A) > 0, A contains a configuration of the
form {(a,b), (ga,b), (ga, gb)}, where g € R.

We would now like to say a few words about inequality (3.1). If S is abelian and (3.1)
were to be replaced by the alternate expression p(A N T, AN Sy 1A) > 0, the resulting
definition for sets of 2-recurrence would be equivalent to the given one. However, if S is
non-abelian, the corresponding alternative definition is neither thought to be equivalent
to Definition 3.1, nor has this alternate version been conducive to study. Indeed, it is
unknown whether or not for every countable amenable group S, given commuting measure
preserving S-actions {T,}gses and {Sy}ses on a probability space (X,B,pu), and A € B
with z2(A) > 0 there exists g # e with u(ANT;'AN S, 'A) > 0. On the other hand, one
has the following.

Theorem 3.3 ([BMZ]) If G is a countable amenable group, {T,}sec and {Sq}qec
are commuting measure preserving G-actions on a probability space (X, B, u), and A € B
with p(A) > 0 then the set {g € G : u(ANT, AN (T,S,)"'A) > 0} is both left and
right syndetic. In particular, any left or right thick subset of G' is a set of measurable
2-recurrence.

As an application of Theorem 3.3 we present the main original result of this paper,
namely a non-commutative Schur theorem for amenable groups. Recall that a sequence of
finite subsets {®,,}°2; in a countable amenable group G is called a left (respectively right)

Fglner sequence if for every s € G we have % — 1 (respectively % — 1) as

n — oo. {®,}52; will be called a two-sided Folner sequence if it is both a left and a right
Fglner sequence. It is well known that every countable amenable group admits a two-sided
Fglner sequence. If {®,}52 ; is a (left, right or two-sided) Fglner sequence and E C G,
the upper density of E with respect to {®,,}52 ; is defined to be the number

- End,
d(E) = limsup w

n—00 ‘(I)n‘

One easily checks that if {®,,}°° ; is a left (respectively right) Fglner sequence then d(sE) =

d(E) (respectively d(Es) = d(E)) for all s € G and E C G. If lim,, |E|gf|"| exists, we
call the limit d(F) and say F has density d(FE). Working with d has an advantage over
working with d in that d is additive in the following sense: if EN F = () and d(E) and
d(F) both exist then d(F' U F) = d(FE) + d(F).

The following well known facts will be used in the proof of Theorem 3.4:

(a) Suppose E; C G, i € N, and {®,,}°2, is a left Fglner sequence for G. There exists
an increasing sequence (ng)ren C N such that for all i € N, d(E;) exists with respect to
the left Fglner sequence {®,,, }ren-

(b) If {®,}22, is a left Fglner sequence then there exists a left invariant mean m
having the property that for every E' C G for which d(FE) (taken with respect to {®,,}52 ;)
exists one has m(FE) = d(E).

12



(c) If G is a countable amenable group then G x G is as well. Furthermore, if {®,,}5%
and {¥, },en are any two left Fglner sequences for G then {®,, X ¥,,},,en is a left Fglner
sequence for G x G.

(d) If G is a countable amenable group, A C G is a subgroup, and {®,}>2; is any
left Fglner sequence for G' then d(A) exists and is equal to [G—%A] if [G: A] < oo and 0 if

[G : A] = co. (This is a consequence of shift invariance of d and the fact that G is the
disjoint union of the left cosets of A.)

(e) If G is a group having two subgroups of finite index A and B then AN B is of
finite index as well. (If [G : A] = m and [G : B] = n, consider the homomorphism g —
(¢1(9), P2(g)) of G into Sy, x Sy, (S, being the group of permutations of the left cosets of A
and S, being the group of permutations of the left cosets of B), where ¢1(g)(hA) = (gh)A
and ¢2(g)(hB) = (gh)B. The kernel lies in AN B.)

Theorem 3.4 Suppose that G is a countable amenable group and that G = |J._, C;
is a finite partition. Let A = {g € G : [G : C(g)] < oo}. If [G : A] = oo then there exist
z,y € G and i, 1 <i <r, with zy # yzr and such that {z,y, zy,yz} C C;.

Proof. That A is a subgroup of G is a consequence of (e), since C(g) N C(h) is
contained in C(gh). Let {®,}22; be a two-sided Fglner sequence for G. Passing if nec-
essary to a sub-sequence of {®,,}°2, we may by (a) assume that d(C;) exists, 1 < i < r.
Renumbering if necessary, we may also assume that d(C;) > 0, 1 <i < rg, and d(C;) = 0,
ro <4 <r. Then d(J.;2,C;) = 1. Let E = G\ A and replace C; by C;NE, 1 < i <.
By (d) we have d(E) = 1, so we still have d(|J;2, C;) = 1, and moreover | .2, C; C E.
By (b) there exists some left (or right, since {®,, } >, is two-sided) invariant mean [ such
that [(U;2, C;) = 1. In particular by [P, Theorem 1.21] |J;2, C; is both left and right
thick. Since a subset F' of G is left (respectively right) thick if and only if F~! is right
(respectively left) thick, it follows that | J;2, C; ! is also both left and right thick.

Let (kn)nen be a sequence in N having the property that

TR (3.2)

for all n € N and all g € @, (this is possible since {®,}72, is a right Fglner sequence).
By (c), {®k, X Pn}nen is a left Fglner seqence for G x G. For C C G let C = {(a,b) €
G x G :ab”! € C}. We claim that if d(C) exists then d(C) (measured with respect to
{®k, x P, }nen) exists and equals d(C'). To see this, consider that

ICN (P, X By

lim = lim Cn (Pr, x
n—oo | @ X B 00 |Op, || @n) || ol Z | ko % {9})]
o, NC
|<1>k||<1>|z' e 10
= 111m
. 1 |Dg, NC|
= lim = =d(C).
ge®,



(We have used (3.2) in the final equality.) In particular for every i, 1 < i < 7o, d(C;)
exists and is positive. By (a), we may by passing to a sub-sequence of the Fglner sequence
{®k, x P, }nen assume that for all (g1, h1), (g2, he) € G X G,

d(él N (gl, hl)_léi N (g2a h2)_1é’i)

exists, 1 < i < rg. Using (b), let m be a left-invariant mean on G x G having the
property that m(E) = d(F) for all E C G X G for which d(FE) exists. By Theorem 2.1, for
1 < i < 1y there exist probability spaces (X, Bi, p;), sets A; € B; with p;(A;) > 0, and

measure preserving G X G-actions { h)}(g nyeaxa such that for any (g1, h1) and (g2, ha)
in G x G we have

d(Cz' N (g1, hl)_léi N (g2, h2)_1éi) = m(éi N (g1, hl)_lé' N (g2, h2)_1éi)

= (A N (T )T AN (T L )T A,

1< <ro Let X =[T1% Xi, p=[T2y tir Tiginy = [112 T{hys and A =T}2; A;. Then
wu(A) > 0, so by Theorem 3.3 the set

R={geG:pANT, e)AﬂT(gg)A)>0}

is both left and right syndetic in G. We have
dC;in(g7Y,e)Cin (g™ g7HC) >0,1<i<ry, g€R.

Since R is left and right syndetic and (J;2 ~1! is left and right thick there exists
g€ RN, C;i ", Hence for some i, 1 < z<r0, We havegERﬂC . Letting Cp = G\
C(g) we have by (d) that d(Cp) = 1 with respect to {®,}22; (since g~' € |J.2, C; C E),
so that d(Cp) = 1 with respect to {®r, x B, }nen. Since

n=1

d(C;n (g7, e)Cin (g_l,g_l)é’i) >0
there exists . ) ) .
(a,b) € (ConCin(g~Ye)Cin (g™, 97 1)Cy).
Then ab~! doesn’t commute with g and {g=!,ab™1, gab=1, gab=1g~1} C C;. Letting x =

Land y = gab~! we have zy # yx and {z,y, vy, yz} C C;.
O

4. k-recurrence, questions, and examples.

As an extension of the ideas brought forth in the previous two sections, we now discuss
those classes of sets along which one has higher orders of recurrence. The reader will notice
that the case k = 1 in what is to follow gives the notions of Section 2, while the case k = 2
in part (a) corresponds to Definition 3.1.
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Definition 4.1 Let £ € N and suppose that R is a subset of a countable semigroup
S.

(a) R is called a set of measurable k-recurrence if for every k commuting measure
preserving S-actions {Tg(i)}geg, 1 < i < k, on a probability space (X, B, ) and every
A € B with p(A) > 0 we have

1)y—1 1) (2)y—1 1 k)y—1
pAN (T TAN(TOT) AN -0 (TP - TF) 71 4) > 0

for some g € R.
(b) R is called a set of topological k-recurrence if for every k commuting S-actions

{T;i) }ges, 1 < i <k, by continuous self-mappings of a compact metric space X, which is
minimal with respect to the resulting S*-action, and every open set U C X we have

Un (@M un(@MT@)tun- - n (@O T IU £ 9

for some g € R.
(¢) R is called a set of chromatic k-recurrence if for every k commuting S-actions

{Tg(i) }ges, 1 <@ <k, by continuous self-mappings of a compact metric space X, and every
open covering {Uy,---,U,} of X there exists s with 1 <4 < r such that

U; N (T U 0 (TOT) o 00 (T - T U £ 0

for some g € R.

If a set R is a set of measurable (respectively topological, chromatic) k-recurrence for
every k € N, then R is said to be a set of measurable (respectively topological, chromatic)
multiple recurrence. The following remarks are given as motivation for the questions to
follow.

Remarks 4.2

A. In § = N there exist sets of measurable 1-recurrence which are known to fail
2-recurrence ([F2, p. 177]), or for which it is unknown whether or not they are sets of
2-recurrence, eg. {p — 1 : p prime} (for a proof that this set is density intersective and
hence a set of measurable recurrence see [Sa]). However, every set R C N which is known
to be a set of 2-recurrence is also known to be a set of multiple recurrence.

B. In § = N there exist sets, eg. the example of Kriz, which are sets of chromatic
1-recurrence but fail to be sets of measurable 1-recurrence.

C. According to Theorem 2.6 (d) every set of measurable recurrence in a countable
left amenable semigroup S is a set of chromatic recurrence.

D. According to Theorem 2.6 (b), for countable abelian groups any set of chromatic
recurrence is a set of topological recurrence, but there exist sets of chromatic recurrence
in free groups which are not sets of topological recurrence.

Questions 4.3

A Does there exist a set B C N which is a set of measurable 2-recurrence but not a
set of measurable multiple recurrence?
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B. Does there exist a set R C N which is a set of chromatic 2-recurrence but not a
set of measurable 1-recurrence?

C. Does there exist an example of a countable semigroup S and a set R C S which is
a set of measurable recurrence but is not a set of chromatic recurrence?

D. For which classes of countable semigroups, if any, intermediate to abelian and free,
are all sets of chromatic recurrence sets of topological recurrence?

Remark. Our guess is that the answers to Questions 4.3 A, B, and C should all be
yes.

For the purposes of describing the current state of knowledge, we offer a few examples
of types of sets that are known to be sets of k-recurrence for various k. The two most
commonly encountered, non-trivial classes of sets known to have strong recurrence prop-
erties in semigroups are left thick sets (see Definition 2.3 (b)), and IP sets. Recall that
in a semigroup S, the (left) IP set generated by a sequence (yYn)nen C S is the set of
products of finite subsets of the sequence taken in order of increasing indices, namely the
set FP({Yn)neN) = {Yi, - -~ Yi, : 01 < --- < ig}. Every left thick set L contains an IP set.
Indeed, let y; € L, and having chosen yi,¥y2,-+,yn € S such that FP((yx)i<k<n) C L,
choose yn, 11 with FP((yx)i<k<n)Yn+1 C L. It follows that in the examples to follow any
assertion made about IP sets is true for left thick sets as well.

Examples 4.4

(a) Every IP set in a countable semigroup is both a set of measurable recurrence and
a set of chromatic recurrence.

(b) Every left thick set in a countable semigroup is a set of topological recurrence.

(c) Every IP set in a countable group is a set of chromatic 2-recurrence ([BH, Corol-
lary 2.7]). IP sets in countable groups need not, however, be sets of chromatic 3-recurrence
([BH, Corollary 4.6]), nor are IP sets in semigroups necessarily sets of chromatic 2-
recurrence (see Theorem 4.5 below).

(d) Every IP set in a countable abelian group is a set of measurable multiple recurrence
([FK]) and a set of topological (or chromatic, which in the abelian case is the same) multiple
recurrence ([FW]).

(e) ([BMZ]) Every left thick set in a countable amenable group is a set of measurable
2-recurrence, a set of topological 2-recurrence, and a set of chromatic 3-recurrence.

Although it does not provide an answer to Question 4.3 C, consider that if R is a set
of topological recurrence in a countable semigroup S, (X, B, 11) is a finite probability space,
A € Awith p(A) > 0 and {R,y}4es, {T,}4es are commuting measure preserving S-actions
on X, for some g € R we have u(R;'AN(R,T,)"'A) = n(ANT, ' A) > 0. The analogous
“chromatic” statement is false:

Theorem 4.5 There exist a countable semigroup S, a set R C S which is a set of
chromatic (and measurable) recurrence, a compact space X, two commuting S-actions by
continuous self-mappings of X {T,}ses and {R4}4ecs, and an open cover {Us,---,U,} of
X such that R;lUi N(RyTy) 'U; =P forallge Rand 1 <i <.

Proof. Let S be the free semigroup on the countable family of letters (y,)nen With
identity e, and let R be the IP set FP({yn)neN)- R is a set of chromatic and measurable
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recurrence. According to [BH, Theorem 4.3], there exists a finite partition {Aq,---, A,}
of S x S such that no cell contains a configuration of the form {(ga,b), (ga, gb)} for any
g9 € FP((yn)nen) (any reader who looks up this reference is advised that we are performing
a left-right switch in the semigroup multiplication due to the fact that IP sets are taken
with multiplication in decreasing order of indices there).

Let Z = {1,---,7}5%5. Let ¢ be the element of Z defined by £(s,t) = i if and only
if (s,t) € 4;,1 <i<r,s,t €S. Define commuting S-actions {R,}4es and {T;}4es on
X by Rgy(h, k) = v(hg, k) and Tyy(h, k) = (h,kg). Put X = {TyRy€: (g,h) € S x S}. X
is invariant under both actions {R4}scs amd {Ty}ges. Let U; = {y € X : v(e,e) = i},
1<i<r. Then {Uy,---,U,} is an open cover of X.

Suppose now for some 4, 1 < i < r, and some g € R, we have R, 'U;N(R,T,)"'U; # 0.
Then for some (a,b) € S x S we have R,Tyé € R;'U; N (R,T,)"1Us. Then RgoTyé and
R,y both lie in U;, that is {(ga, b), (9a, gb)} C A;, a contradiction.

O
5. Topological recurrence vs. chromatic recurrence.

We would like to conclude with a few words concerning the relationship of topological
k-recurrence to chromatic k-recurrence. For abelian groups these notions are the same, and
a close inspection reveals that it is this equivalence which lies at the heart of the inductive
proofs of multiple recurrence results in topological dynamics, e.g. the topological proof of
van der Waerden’s theorem. One is able to show that if a class of sets (such as thick sets
or IP sets) having certain translation properties (for example, that any set in the class
may be shifted by many of its own members and yield another set in the class) are sets
of topological k-recurrence then they are also sets of topological k£ + 1-recurrence. In the
non-abelian case, this induction breaks down, but in an interesting way. One is still able
to show that if members of the class are sets of topological k-recurrence then they are
sets of chromatic k + 1-recurrence. An argument of this nature was carried out in [BMZ,
Theorem 7.1]|, where it was shown that left thick sets are sets of chromatic 3-recurrence
for countable amenable groups. (This example, incidentally, marks one of our reasons for
even bothering about “topological recurrence”, which owing to results such as 2.6 (c¢) and
2.7 (c) seems otherwise to be a rather ineffectual notion.)

The difficulty is that one may not automatically conclude (as one does in the abelian
case) that members of the class in question are sets of topological k + 1-recurrence, which
seems necessary in order for the induction to proceed. Indeed, the only way we have at
present to circumvent this snag, and this method is valid only in the presence of amenabil-
ity, is to establish measurable k + 1-recurrence. For example, a consequence of Theorem
3.3 is that any left or right thick subset of a countable amenable group is a set of topo-
logical 2-recurrence. Oddly, we have no proof of this topological fact which doesn’t use
(measurable) ergodic theory. It would be interesting to see whether there are legitimate
reasons for this being so or whether there exists a more elementary method, perhaps one
which would yield arbitrarily high orders of chromatic recurrence, without any appeal to
measurable methodology.
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