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Abstract: We prove the following mean ergodic theorem: for any two commuting mea-
sure preserving actions {T,} and {S,} of a countable amenable group G on a probability
space (X, A, 1), and any ¢, ¥ € L2(X, A, p), lim,, oo M}_nl > ca, P(Tox)(SyTyx) exists in
LY'(X, A, u), where {®,} is any left Fglner sequence for G. This generalizes Furstenberg’s
ergodic Roth theorem, which corresponds to the case G = Z, T, = S,, as well as a more gen-
eral result of Conze and Lesigne (which corresponds to the case G = Z with no restrictions
on T, and Sy). The limit is identified, and two combinatorial corollaries are obtained. The
first of these states that in any subset E C G x G which is of positive upper density (with
regard to any left Fglner sequence in G x (), we may find triangular configurations of the
form {(a,b), (ga,b),(ga,gb)}. This result has as corollaries Roth’s theorem on arithmetic
progressions of length three and a theorem of Brown and Buhler guaranteeing solutions to
the equation = + y = 2z in any sufficiently big subset of an abelian group of odd order. The
second corollary states that if G x G x G is partitioned into finitely many cells, one of these
cells contains configurations of the form {(a, b, ¢), (ga, b, ¢,), (ga, gb,c), (ga, gb, gc)}.

1 Introduction

A far reaching extension of the Poincaré recurrence theorem was given in 1977 by H. Fursten-
berg ([7]), who showed that if T is a measure preserving transformation on a probability
space (X, A, u), one has multiple recurrence: for any positive integer k, and any A € A,
u(A) > 0, there exists an integer n > 0 such that

WANT"AN--.nT~E=Dn 4y > 0.

Besides being of intrinsic interest to ergodic theory, Furstenberg’s multiple recurrence theo-
rem may be used to reprove an important combinatorial result - Szemerédi’s theorem ([16]),
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which states that any set £ C N of positive upper density

d(E) = lim sup [EN{L,---, N}|
N—o0 N
contains arbitrarily long arithmetic progressions.
As a matter of fact, Furstenberg and Katznelson showed ([9]) that for any commuting
measure preserving transformations 7T7,---,T} on a probability space (X, A4, ), and any
A€ A, with u(A) > 0, one has

N—1
PR 1 —-n —-n
l}wgofﬁ EOH(AQTI AN---NT,"A) > 0.
n=

This leads naturally to the investigation of limits of expressions of the form

N-—1
Fry = 3 A(T0a) fulTfe),
n=0

where {f; : 1 < i < k} is a set of bounded measurable functions and {T; : 1 <14 < k} is
a family of commuting measure preserving transformations. Although it is believed that,
in the general case, limy_,, Fiv exists in norm, or even a.e., the instances for which this
has been proved are few. Even in the case of powers of the same transformation, T; = T?,
i = 1,---,k, existence of the limit in norm is known only for £ = 2 and k£ = 3. In the
case k = 2, this was proved in Furstenberg’s pioneering work [7] (see also [8], section 4.4).
Furstenberg calls this result the ergodic Roth theorem, since it gives as a corollary the first
non-trivial case of Szemerédi’s theorem, Roth’s theorem ([15]), which states that any set
of positive upper density in N contains arithmetic progressions of length 3. For the case
k = 3, see Conze and Lesigne [4], [5], or Furstenberg and Weiss [12]. In the more general
case of commuting transformations, the best result to date is due to Conze and Lesigne,
who established the existence of the limit

1 N—-1
lim — > fi(T7'z) f2(T5') (1)
n=0

N—oo N
in LY(X, A, ) for f1, fo € L2(X, A, p).

One might ask whether the Furstenberg and Katznelson multiple recurrence theorem
generalizes to measure preserving actions of more general groups. Thus, if {Tg(i) g €
G}i<i<k are commuting (i.e. T,Ei)Téj) = Téj)T,Si) foralll < i # j < kandh,ge@G)
measure preserving G-actions on a probability space (X, A, u), does there exist, for any
A€ A p(A) >0, some g € G, g # e, such that u(ANTVANTHVAN---nTHA) > 07
Evidence presented in [1], where a topological version of this question is dealt with, namely

Tg(i) are homeomorphisms of a compact space and A is an open set, suggests that the answer
in general may be no. However, if G is amenable and one writes instead

1 1 2 1 k
pANTWANTITD AN 0T ... TF 4) >0, (2)
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there are some reasons for hope (see [1, 2]). Indeed, in this paper we will prove this for
k=2.

We will first show that if G is any countable amenable group (equivalently, G is countable
and has a Fglner sequence), and {®,} is any left Fglner sequence for G (that is, ®, C G,
with |®,| < 0o, n € N, and |®,,| = oo, % — 1for all g € G), then for any commuting

measure preserving G-actions {7} and {Sgn} on a probability space (X, A, u), the limit

lim ﬁ 3 o(T,0)(S,Ty2)

n— o0
9ED,

exists in L'(X, A, u) for every ¢, 1 € L?(X, A,pn). Following Furstenberg, we call this
an ergodic Roth theorem for amenable groups. This result includes as a special case the
existence of the limit (1). Furthermore, we will identify the limit by means of an explicit
formula (§4). Then we will show, in (§5), that if u(A4) > 0, the set

{g: u(An TgflA N (T,S,) *4) > 0}

is both left and right syndetic. (A subset B C G is said to be left (right) syndetic if
G =UL, 9B (G = U, Byg;) for some gy,---,9, € G.) As an application of this result,
a combinatorial corollary will be proved (Theorem 6.1) which may be viewed as a gener-
alization of Roth’s combinatorial result about arithmetic triples. In the abelian case, this
will also give as a consequence (Corollary 6.4) a theorem of Brown and Buhler ([3], [6]). In
order to formulate this corollary now, we indicate the following definition from (§5). If G is

an amenable group with a left Fglner sequence {®,}, and A C G, the upper density of A
[®.NA|

E We also make note of the

with respect to {®,} is the number d(A4) = limsup,,_,,
fact that if a group G is amenable then G x G is as well.

Combinatorial Result 1. (Theorem 6.1) Suppose G is a countable amenable group
and that E C G X G has positive upper density with respect to a left Folner sequence {®,}
for G x G. Then the set

{g € G: there ezists (a,b) € G x G such that {(a,b), (ga,b), (ga,gb)} C E}

is both left and right syndetic in G.

Finally, in (§7), we will prove, as a further application of the results of (§5), a topological
multiple recurrence theorem for three commuting actions of a countable amenable group
G as homeomorphisms of a compact metric space. This theorem will have the following
consequence, which, in light of some counter-examples (in free groups G) given in [1], is
somewhat surprising:

Combinatorial Result 2. (Corollary 7.2) Suppose that G is a countable amenable
group, r € N, and G x G x G = U::1 C;. Then the set

{g € G : there ezrists i,1 <1 <r, and (a,b,c) € G x G x G such that

{(aa b7 C), (ga7 b7 C), (gaa gb: C), (gaa gba gc)} C Cz}
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is both left and right syndetic in G. Acknowledgement: We thank H. Furstenberg for

inspiring the present work and for many helpful suggestions.

2 Preliminaries

In this section we give a brief account of the machinery that we will be using. For further
information, the interested reader may consult ([7], [11], [17], and [18]). We note, however,
that our treatment differs slightly from that of Zimmer’s, in that we consider left actions
{T,} (that is, Typxz = T,Thx), of our space X, whereas he considers right actions. Suppose
(X, A,p) and (Y,B,v) are probability measure spaces and that = : X — Y is measure
preserving. Then there exists a family of probability measures {u, : y € Y} on (X, A),
having the following properties:

(i) py(r'(y)) =1forae yevY.

(ii) For every f € L'(X,A,p), the function y — [ fdu, is B-measurable, and
[ fdu= J{[ fdp,}dv.

This “decomposition” {u, : y € Y} of the measure p is essentially unique; that is, if
{uly} is another family with the above properties, then p, = ,u;/ for a.e. y € Y. Conditional
expectation is given by

E(f |7 (B)@) = [ fOdue(o)(®)

for f € LY (X, A,p). (-,+)y and || - ||, will be used to denote the inner product and norm
with respect to the measure p,.

In a small abuse of terminology, we will often regard B itself as being a o-algebra on
X, namely the o-algebra 7—!(B). Also, since any sub-o-algebra of A may be realized as
71 (7 (A)) for some factor map 7 onto some space Y, we will often speak of such o-algebras
as being themselves “factors”. Suppose that 1(z) is a B-measurable (that is, measurable
with respect to 77 1(B)) function on X. Upon removal of a set of measure zero from X,
Y(y) = ¢ (r~(y)) will then be well-defined. Thus ¢ may be thought of as a function on Y.

A closed subspace M C L?(X, A, u) will be called a B-module if, for every B-measurable
function 9 and ¢ € M satisfying ¢ € L%(X, A, ), we have 1) € M. A (finite or infinite)
subset S C L2(X, A, 1) spans a B-module M if the set

{11 + -+ Yrpr : Y1,...,¢0 € L®°(X,B,pu) and ¢1,...,0r €S }

is dense in M.

If M is a B-module and y € Y, we will denote by M, the image of M under the
restriction map f — f, = f |z-1(y). My is a subspace of L*(X, A, u,), and for any f €
L*(X, A, p), the set {y : f, € M,} is B-measurable. If there exists r < oo such that for a.e.
y €Y, dim M, < r, then M will be said to be finite dimensional. If dim M, is constant
a.e., then we will say that M is of uniform dimension. Conversely, if for a.e. y € Y, M,
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is a subspace of L*(X, A, u,), and if for any f € L*(X,A,p), the set {y : f, € M,} is
measurable, then the subspace {f : f, € M, a.e.} C L?*(X, B, p) will be a B-module which
we denote by M = f® My dv(y).

For any B-module M, a (finite or infinite) sequence {¢,} C M is called a global or-
thonormal sequence if (Y;,v;), = 0 for i # j and [|¢||, = 1 a.e. If {¢;} also spans M,
then it will be called a global orthonormal basis for M. It is clear that if {¢;} is a global
orthonormal basis for M, then for a.e. y € Y, the non-zero elements in {¢;,} form an
orthonormal basis for M,. We remark that, given a B-module M of uniform dimension,
one can derive from any spanning sequence (using a modified Gram-Schmidt procedure), a
global orthonormal basis.

Suppose G is a countable amenable group, and that {T, : ¢ € G} and {S,; : g € G}
(sometimes denoted by simply {T,} and {S,}), are measure preserving G-actions on X and
Y, respectively, and that 7T, = Sym for all g € G. Then (X, A, u,{T,}) will be called an
extension of (Y,B,v,{S,}), and (Y, B,v,{S,}) will be called a factor of (X, A, u,{T,}). If
there exists a {7, }-invariant measurable set X' C X and an {S, }-invariant measurable set
Y' Y, with p(X') = v(Y') = 1, such that 7 is a bimeasurable bijection from X' to Y,
then (X, A, u, {T,}) and (Y, B, v, {S,}) will be said to be isomorphic.

In general, if (Y, B, v, {S,}) is a factor of (X, A, u, {T,}), then 7=1(B) is a {T} }-invariant
sub-o-algebra of A. As before, we will sometimes write B instead of 7~!(B), and speak of
the factor (X, B, u,{T,}), or just the factor B.

For f € L*(X, A, n), write T, f(z) = f(T,x). Then T}, is a unitary operator and {T, },ecc
is a unitary anti-action of G (i.e., Tynf = TpT,f). More generally we have, for g € G and
y € Y, operators

Tyt (X, A, pr,y) = L2(X, A, py), Tgyf(z) = f(Tyz).

For a.e. y € Y, Ty, is unitary for all g € G. A B-module M is said to be {T,}-invariant if
TyM C M for all g € G. Equivalently, for a.e. y €Y, Ty yMr,, = M, for all g € G.

We denote by K (B, {T,}) the smallest closed sub-space of L?(X, A, u) containing all finite
dimensional {7}, }-invariant B-modules. One can show that there exists a {T} }-invariant sub-
o-algebra By such that L?(X, By, u) = K(B,{T,}). If Br = A, (X, A, u, {T,}) will be called
a compact extension of (Y, B,v, {T,}).

A cocycle representation on a {T,}-invariant B-module M is a family of unitary maps

alg,y) Mg,y =+ My; g€G, yeY

satisfying a(gh,y) = a(h,y)a(g, Try), such that for every ¢, ¥ € M and g € G, the pruduct
(py,a(9,y)¢1,y)y is a measurable function of y. It is clear that

Tyy: Mr,y = M,y

defines a cocycle representation {T,, : g € G,y € Y} on M, called the natural cocycle
representation induced by {T,;}. We will denote this cocycle by {T, |r}. Suppose next that
H is a compact group. We call a measurable map a : G XY — H an anti-cocycle if for a.e.
yey,

a(gh,y) = a(g, Tay)o(h, y).
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It (Y,B,v,{T,}) is ergodic, then every finite dimensional, {T,}-invariant B-module M
will be of uniform dimension, and therefore will have a global orthonormal basis @1, -, ©n.-
Then we will have M = {f € L*(X, A, u) : f(z) = M (@)p1(x) + -+ + An(@)on(x) : N is
B-measurable, 1 < i < n.} By {T,}-invariance of M, we may write

n

i=1

Since Ty, : Mq,, = M, is unitary, {Typ; : 1 < i < n} will also be a basis and for a.e.
y €Y, (Xij(9,¥))1<i,j<n Will be a unitary matrix M(g,y). U(n), the group of n x n unitary
matrices over C, is a compact group, and {M (g,y)} is an anti-cocycle, called the anti-cocycle
induced by (M, {T,,}) with respect to ¢1,---,pn. It is characterized by:

Ty () o1()
: = M(g,7(z)) :
Typn(z) on(z)

If we fix some y € Y and z € 7 !(y), we can write the above equation as

Tg,yp1,1,y(2) P1,y(z)
: = M(g,y)
Ty,ypn,1,y(T) Pny(T)

Hence the matrix M(g,y) induces the operator T, : Mz,, — M, relative to the global
basis (¢;)-

Suppose that two systems (X, A,pu,{T,}) and (Z,C,w,{S,}) have a common ergodic
factor (Y,B,v,{T,}), and that M and N are finite dimensional {T,} and {S,}-invariant
B-modules in L?(X, A,p) and L?(Z,C,w) respectively. Let 7 : X - Y and7: Z =Y
be the factor maps. Two cocycle representations & on M and 8 on N will be said to be
cohomologous, or equivalent, if there exists a family of unitary maps V,, : M, — Ny, y €Y,
such that for any ¢ € N, ¢ € M, (p,, Vy1)y), is measurable in y, and

Vya(g; y)VTngl/ = B(ga y)
a.e.

Proposition 2.1 Suppose (X, A, u,{Ty}) and (Z,C,w,{Sy}) have a common ergodic factor
(Y,B,v,{T,}), and that M and N are, respectively, {T,} and {S,}-invariant finite dimen-
sional B-modules in L*(X, A, p) and L?(Z,C,w). Then {T, |m} is equivalent to {S, |n}
if and only if for any global orthonormal basis ¢1,---,on for M, there exists a global or-
thonormal basis 11, -, ¢, of N such that the anti-cocycle {M(g,y)} induced by (M, {T,})
with respect to p1,---,pn is equal a. e. to the anti-cocycle {N(g,y)} induced by (N,{S,})
with respect to 1, -+, Py
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Proof. Suppose that {T, |am} is equivalent to {S, |y} via a family {V, : M, — N} of
unitary operators satisfying
-1
Sgy = VyTg,yVTgy-

Suppose that {¢1,---,¢n} is any global orthonormal basis for M. Let t; € N, be defined
fiberwise by ¥y = Vypiy, 1 < i < n,y € Y. Then the anti-cocycle {M(g,y)} induced
by (M, {T,}) with respect to ¢1,---, ¢, is equal to the anti-cocycle {N(g,y)} induced by
(N, {S,}) with respect to 91, -, ¥p.
For the converse, simply define the family V,, by V,, 1 iy = 95y, 1 <i<n,y €Y.
O

Suppose that systems (X, A, u, {T,}) and (Z,C,w,{S,}) have a common ergodic factor
(Y,B,v,{T,}). We define A ® C to be the o-algebra on X x Z generated by {A xC: A€
A,C € C}. We will denote by p X w the measure on (X x Z, A® C) defined by

/quxgw:/(/quyxwy>dV(y)

for any A ® C-measurable function F. p xp w is characterized by its effect on functions of
the form ¢ ® 9, where ¢ ® ¥ (x, 2) = p(x)¥(2). One easily checks that p xpw is {T, x S, }-
invariant. Hence (X x Z, A® C,u xgw,{T, x Sy}) is a measure preserving system having
(Y,B,v,{T,}) as a factor. The support of X gw is seen to be {(z,2) € X x Z : m(z) = 7(2)}.
It follows that the factor maps from X x Z onto Y, 7' (z,2) = n(z) and 7'(z, 2) = 7(2), are
equal a.e. (with respect to u xp w). The following definition appears in [11].

Definition 2.1 A positive definite symmetric kernel (or PDS kernel) for B is a function
H(z,z') € L®(X x X, AQ A, u xp p) which satisfies the following for a.e. (with respect to
uxpp)(z,z)eX xX:

(i) H(z,x') = H(z',x);

(ii) [ H(z,z")(@)¢(a") du xp p >0 for any ¢ € L®(X, A, p).

Every H € L?(X x X, A® A, u x5 p) induces an operator H on L2(X, A, u1), given by

(Hy)(2) = / H(z, ' Y(e') ditn(ay ().

If H is a PDS kernel, H will be self-adjoint and positive (semi-)definite. We also have a
fiberwise decomposition H = [ H, dv(y), where

H, : L*(X, A, puy) = L*(X, A, p1y)

is given by
(H, ) () = / H(z, o) (e )y (2').

For a.e. y €Y, Hy is a Hilbert-Schmidt operator.
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According to the spectral theorem for compact operators, for a.e. y € Y the spectrum
of H, consists of a bounded sequence of positive numbers and possibly zero, with zero
the only possible limit point of this set. Each non-zero element of the spectrum is an
eigenvalue with finite multiplicity. The eigenspace corresponding to A = 0 (the nullspace of
H,) may be empty, of finite dimension, or of infinite dimension. One can list the non-zero
eigenvalues of H,, repeating each according to its multiplicity, as A1 (y) > A2(y) >
{M(y) > A2(y) > ---} will be called a complete set of eigenvalues. We now have the
following:

Theorem 2.2 The functions \j(y) are B-measurable. Moreover, there exists a sequence of
functions {0,} C L*(X, A, u) such that for all m,n € N, and a.e. y €Y,

(On,y, Om,y)y = Onm and Hybp, y = A (y)0p 4.
A proof of this theorem as well as the following corollary can be found in [11, 3.7].

Corollary 2.3 Suppose that H is a PDS kernel. Let {6,,} be a sequence of functions such
that (0n,y,0m.y)y = Onm and Hyby, , = A (y)0n,y. Then

)= Z An(y)n (z)0n (z")

and

= [ HaBa@0(") duy () &) s
Suppose H is a {T, x T, }-invariant PDS kernel. Then
HIW)@) = [ Ho)o(T,e) duy (@)

)i(a') dp,y (z')

I
—
m

= /H (Tyz,z")p(2") dur,y (")
= Hy(Tyz) =T,(Hy)(z).

Thus HT, = T,H. Therefore Hy,, = T, H,T,,, which 1mp11es that A\, (Tyy) = An(y).
Since we are assuming that (Y, B, v, {T, }) is ergodlc A1(Y), A2(y), - - - must be consta.nt a.e.,
and we may merely write A1, A2, --. The numbers A; will be called the B-eigenvalues of H.
We also call 61,65, -- (asin Theorem 2.2) the B-eigenfunctions corresponding to Ay, Ag, - - -

The following proposition follows immediately from the fact that HT, = T, H.
Proposition 2.4 Suppose that H is a PDS kernel with a complete set of eigenvalues

M) > Xa(y) > -}

For X\ € {1, )a,---}, let My, C L*(X, A, py) be the finite dimensional subspace spanned
by {On,y : An = A} and let My = [, My dv(y). Then My C K(B,{Ty}).
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Corollary 2.5 If H is a {T, x T, }-invariant PDS kernel, then the image of H is contained

Suppose again that (X, A,u, {T,}) and (Z,C,w,{S,}) have a common ergodic factor
(Y,B,v,{T,}), with factor maps 7 : X —» Y and 7 : Z — Y, respectively. Let M, N be
{T,}- and {S,}-invariant finite dimensional B-modules in L*(X, A, u) and in L*(Z,C,w),
respectively. If {T}, |r¢} is equivalent to {S, |x}, then by Proposition 2.1 there exist bases
{p1, -, pn} for M and {41, --,¥n} for N such that the anti-cocycle { M (g,y)} induced by
(M, {T,}) with respect to {¢1,---,¢n} is equal a.e. to the anti-cocycle {N(g,y)} induced
by (N, {S,}) with respect to {¢1,---,9n}. In this case, let

N
n(®,2) = Y on(@)n(2). (3)

Then 7 is {T, x Sy }-invariant with respect to p X g w, since whenever 7(z) =y = 7(2), we
have

(Ty x Sg)n(z,2) = ZSOH(Tgm)d’n(ng)

n=1

(#1(@),-- on (@) M7 (9,9)N g,9)

Y en(@)dn(2) = 1(z, 2).

(Recall that M(g,y) is unitary and equal to N(g,y) a.e.)

Now suppose that 6(z, z) is any function which is {T, x S, }-invariant with respect to
4 xXpw. We will show that 6(x,z) is a limit of functions of the form (3). Define, for
m(z) = n(z') =y = 7(2) = 7(¢),

Hy(z,z') = /O(x,z)ﬁ(w’,z) dwy(2)

and

Hs(z,2') = /0($,z)0(x,z’) dpiy ().

Then Hy, Hy are {T, x Ty}- and {S,; x Sg}-invariant PDS kernels on X x X and Z x Z,
respectively, inducing fiberwise Hilbert-Schmidt operators H; on L?(X, A, ) and Hy on
L?(Z,C,w) (see the discussion following Definition 2.1).

6 induces a family of operators ©,, : L*(X, A, u,) = L*(Z,C,w,) by

(0,0)(2) = / 0@, 2)0(@) dpiy (2).
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The dual of O, O : L*(Z,C,wy) — (X, A, uy), is given by

/Oxz z) dwy(2).

Let © = f® Oy dv. One may check that H; , = ©;0,, and H, , = 0,0, hence one has
H; = ©6*0 and H, = 60*.

Let {A1 > A2 > ---} be the complete set of B-eigenvalues for H;, and let {1, @2, -} be
the corresponding B-eigenfunctions. Then ©¢; # 0 for j = 1,2,--- (otherwise Hyp; = 0),
and

(1) HQ@(pj = (')@*@(pj = @Hl(pj = )\j@QDj;
(i) (©p;, 0pi) = (p;, Hip;) = A;j(y)di;-

Hence, {A\1(y) > A2(y) > ---} is a subset of a complete set of eigenvalues for Hy, and
Op1, Ops, - - - are corresponding eigenfunctions. We have therefore shown that the complete
set of B-eigenvalues for H; is a subset of the complete set of B-eigenvalues for Ha. A similar
argument shows reverse inclusion, hence the two sets are equal and we have the following;:

Proposition 2.6 If {\y > Ay > ---} is the complete set of B-eigenvalues for Hy, and
V1, P2, - - are corresponding B-eigenfunctions, then {A1 > A2 > ---} is also the complete set
of B-eigenvalues for Hy, and Oy, Ops, - - are corresponding B-eigenfunctions.

A consequence of Proposition 2.6 is that for all ¢ € L?(X, A, u) with ©p # 0, O lies in
the span of the B-eigenfunctions of Hy, so we have Hy0¢p # 0, which implies that Hyp # 0.
Hence ker © = ker Hy. Now, for a.e. z € Z, we have 6(-,z) € L*(X, A, 1), where y = 7(2),

so that
0(z,2) = (/0 &', 2)p; (@) dpy (x ) Zey%

for a.e. z € X (with respect to py). We now have the followmg corollary:

Corollary 2.7 If{\ > Az > - -} is the complete set of B-eigenvalues of Hy, and @1, 2, -
are the corresponding B-eigenfunctions, then for a.e. (x,z), with respect to pu Xg w,

Z ©;(@)(Op;)(2 )

For 0 # X € {A1, A, -- -}, let My, Ny be the finite dimensional subspaces spanned by
{pny : An = A} and {O*p, , : Ay = A} in L*(X, A, u,) and in L?(Z,C,w,), respectively.
Let

M =/ M,y dv(y) and Ny = / Ny dv(y).
® @

My and N, are {T,}- and {S,}-invariant finite dimensional B-modules, respectively. Let
Ay : My = N, be defined by

(Axgn)(2) = 9@%(3) whenever An = A.
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Then Ay, : My, — Ny is unitary a.e., and by T, x Sg-invariance of ©, we have, for all
gea,

(Sg |NA)A)\ = AA(TQ |MA)
Moreover, the anti-cocycle induced by (M, {T,}) with respect to {¢, : A, = A} is equal
a.e. to the anti-cocycle induced by (N, {S,}) with respect to {@f" : Ap = A}. Therefore,
we have the following theorems:

Theorem 2.8 If §(x,z) is a {T, x Sy }-invariant function, then 0 is a limit of linear com-
binations of functions of the form (3).

Theorem 2.9 If 0(x,2) is a {T, x S,}-invariant function bounded a.e. with respect to
W Xpw, then for any f € L*(Z,C,w),

0" f(z) = / 0z, 2)f(2) duwy(2) € K(B,{T,}).

Remark. A proof of Theorem 2.9 can also be found in [18, page 561].

3 Irreducible Finite Dimensional Modules

If (X, A, pu,{Ty}) and (Z,C,w,{S,}) are measure preserving systems with a common ergodic
factor (Y,B,v,{T,}), then by Theorem 2.8, the space of {T, x S, }-invariant functions in
L*(X x Z,A® C,pu Xp w) is spanned by functions of the form (3). In this section, we will
find an orthonormal basis of the space of {T, x S, }-invariant functions.

Definition 3.1 A {T,}-invariant B-module M is said to be irreducible if for any {T,}-
invariant B-module N C M , we have N = M or N' = {0}.

The following lemma has been indicated (without proof) by Conze and Lesigne in [4,
page 149]. For the sake of the completeness, we give a proof.

Proposition 3.1 Suppose that M = [ M, dv(y) is an irreducible finite dimensional {Ty}-
invariant module, and that {1, -, om} is a global orthonormal basis for M. Let {M(g,y)}
be the anti-cocycle induced by (M, {T,}) with respect to {¢1, -, om}. Then:

(i) If A(y) is a B-measurable m xm-matriz-valued function, and {N(g,y) : g € G}
is a family of B-measurable matriz-valued functions such that

A(Tyy)M(g,y) = N(g,y)A(y)

for a.e. y €Y and all g € G, then either A(y) = 0 a.e. or A(y) is an m X m
invertible matrix a.e.

(i) If A(y) is a B-measurable m x m-matriz-valued function such that

A(Tyy)M(g,y) = M(g,y)A(y)

for a.e. y €Y and all g € G, then A(y) = M a.e. (Here X\ is a constant and I
is the m x m identity matriz.)
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Proof. (i) Let

$1(x)
Ma=SfeM: f@) = (i) b)) AW) |
bm(3)

(Where y = w(z) and b; is B-measurable, 1 <4 < m.) The B-module M 4 is {T, }-invariant,
for if f(z) € M4 has the form indicated above, then, for all g € G one has

Tyé1()
Tf@) = (Th@) - Tbn®)ATy) |
Tybm (@)
¢1(z)
= (Th@) - Tobm@)) AT)M(g) |
bm(@)
¢1(z)
= (Tgbl(y)---Tgbm(y))N(g,y)A(y) : € Ma.
bm(@)

Since M is irreducible, and A(y) is not zero, we have M4 = M, from which it is easy to
conclude that A(y) is invertible a.e.

(ii) By (i), we know that A(y) is invertible a.e., and that

A(Tyy) = M(g,y)Aly) M (g,y)~".

This implies that the eigenvalues of A(y) coincide with those of A(T,y). By ergodicity on
Y, we may conclude that the eigenvalues of A(y) are constant a.e. Let A be one of these
eigenvalues and put

My ={ @) = ()-8 ) i

(110000 ) 40) = A1)+ 1) ..

(Again, y = w(z) and b;’s are B-measurable.) Then My is a B-module. Suppose that
f € M has the form indicated. Then

p1(z)
Tyf (@) = (b1(Tyy) -+ bm(Tyy) ) M{g,1)
Pm ()
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We have
(0u(Ty0) - bn(Ty) ) Mg, 0)Ay) = (B1(Tys) b (Ty) ) A(Tyy) M (g, )
= A(B(Ty) b (Tyy) ) Mg,y).

Hence T, f € M) and M is Ty-invariant. Hence My = M and A(y) = AI a.e.
O

For any {T, }-invariant B-module M, we write M* = { : ¢ € M}. For any cocycle rep-
resentation o on M, we define a cocycle representation @ on M* by a(y, 9)@, = a(y, 9)¢y,
¢ € M. One may show that if @ = {T, |sm}, then @ = {T, |m~}. Assume M and N
are {T,}- and {S,}-invariant finite dimensional B-modules on X and Z, respectively, and
that a, B8 are cocycle representations on M and N. Let M ® N be the smallest closed
subspace of L?(X x Z, A® C,u X3 w) containing {p®@1p: o€ Mandyp e N}. Mo N isa
{Ty x Sy}-invariant B-module. Let a ® 8 be the cocycle representation on M ® N defined
by

(a ® B)(g,y)py ® Py = alg, y)py ® B(g,y)y.
A measurable family of operators {A, : Ny = M,| y € Y} will be called an intertwining field
for a and B if for a.e. y €Y, alg,y)Ar,y = AyB(g,y) for all g € G. We will write S(a, )
for the set of intertwining fields. S(«, ) is a vector space, and int(a, ) = dim(S(a, 3))
will be called the intertwining number of a and 8. Proof of the following proposition can be
found in [17, page 386].

Proposition 3.2 For any cocycle representations a on M and 8 on N,
int(a, B) = int(I,a ® f).
(I is the identity cocycle representation on the one-dimensional B-module L*(Y,B,v).)
We now have the following corollary:

Corollary 3.3 The dimension of the B-module spanned by the {T, x S, }-invariant functions
in M@ N* is equal to int({Ty|m}, {Selnl})-

Proof. If we write L*(Y,B,v) = [, &, dv(y), and I = [, I, dv(y), then dim&, = 1 ae.
and we may identify &£, with C, so that I, : &1, — &, is just the identity C — C and we
may suppress it. Also this identification allows us to view S(I,{T, X Sy|man-+}) as the set
of all measurable families {A,} of linear functionals 4, : M, ® N — C satisfying

Aty = Ay(Tyy X Sg,y)- (4)

Such families of functionals are given by integration against a function h € M ® N'*:

A,f = / £, ), 2) day X wy (@, 2) (5)
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for f € M, ® N. Conversely, any h € M ® N* gives rise to a measurable family of
functionals given by (5). Suppose that {A4,} is given by (5). By (4), we have

[ 1@ 8,20m@.2) duy x wy(0.2) = [ Fa,ha,) dur,y x or,y 2,2
= /f(Tga:,ng)h(Tgx,ng) dpy x wy(z, 2),

hence {A,} € S(I,{Ty ® Syl men~}) if and only if his {T, x S, }-invariant.
O

Lemma 3.4 Suppose that (Y,B,v{T,}) is a common ergodic factor of (X, A, u,{Ty}) and
(Z,C,w,{S4}), M and N are {T,}- and {S,}-invariant irreducible finite dimensional B-
modules, respectively, and that {Ty |m} s equivalent to {S, |n}. Then int({Ty |am}, {Sy |V

H=1.

Proof. Let {¢1, -, pm} be a global orthonormal basis for M. By Proposition 2.1, we can
choose a basis {91, --,%¥m} for N so that the anti-cocycle {M(g,y)} induced by {T, |sm}
is equal to the anti-cocycle {N(g,y)} induced by {S, |a}. Since {T, |m} is equivalent to
{Sg |x}, we have an intertwining field {A, : Ny — M, }. We introduce a family of matrices
{A(y)} given by

Y1y PLy

A,: (bl(y) - (y)) - (b1 (y) - bm(y))A(y)

wm,y QOm,y

One may check that A(T,y)M(g,y) = M(g,y)A(y). By Proposition 3.1 (ii), there exists a
constant § such that A(y) = dI a.e. Since this is true for the matrix function induced by
any intertwining field, the result follows.

0O

Lemma 3.5 Same hypotheses as Lemma 3.4, except that {T, |m} is not equivalent to
{Sq |n}. Then int({Ty |}, {Sy n}) =0.

Proof. Suppose that int({Ty |m},{Sy In}) > 0. Let
{Ay i Ny = My} € S{Ty |m}{Sy In})

and put A = [ A, dv(y), A: N — M. Tt is easy to see that AN is a {T,}-invariant sub-
module of M, and therefore is equal to M, and that ker A is an {S, }-invariant sub-module
of AV, hence is trivial. We may conclude that M and N have the same dimension n. Choose
bases for M and N inducing anti-cocycles M (g,y) and N(g,y), respectively. With respect
to these bases (see proof of Lemma 3.4), {A,} will give rise to a family of n x n matrices
{A(y)} such that

A(Tyy)M(g,y) = N(g,y)Ay)- (6)
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By Proposition 3.1 (i), A(y) is invertible a.e. (From (6) we also have

M*(g,y)A*(Tyy) = A*(y)N*(9,9)- (M)

(Here W* is the conjugate transpose of a matrix W. We note that W is unitary if and only
if WW* =1.) Since M(g,y) and N(g,y) are unitary matrices, multiplying (6) by (7) gives

A(T,y)A*(Tyy)N(9,y) = N(g,y) A(y) A ()

By Proposition 3.1 (ii), we have A(y)A*(y) = I a.e. for some constant 6. If £ is an n-

row column vector of norm 1 we have § = (A(y)A*(y)¢, &) = (A*(y)E, A*(y)€) > 0. Hence

Viy) = %A(y)_1 is unitary a.e. and gives rise, via the established bases, to a family of

unitary maps V; : M, — N, satisfying
—1
Vy Ty VTgy =Sy,

contradicting the non-equivalence of {T, |p} and {S; &}
O

The following two theorems are consequences of Proposition 3.2, Corollary 3.3, Lemma
3.4 and Lemma 3.5.

Theorem 3.6 Suppose (X, A, u,{Ty}) and (Z,C,w,{Sy}) have a common ergodic factor
(Y,B,v,{T,}), and that M and N are {T,}- and {S,}-invariant irreducible finite dimen-
sional B-modules, respectively. Then the following are equivalent:

(i) {Ty |m} is equivalent to {Sy |x}.
(it) int({Ty |m},{Sq IN}) =1.

(iii) The dimension of the space spanned by {T, x S,}-invariant functions in

MR N* is one.

Theorem 3.7 Same hypotheses as Theorem 3.6. The following are equivalent:
(i) {Ty |m} is not equivalent to {Sy |n}.
(ii) int({Ty |m}, {Sy In}) = 0.

(iii) the dimension of the space spanned by {Ty x S, }-invariant functions in M ®
N* is zero.

Lemma 3.8 There exists a sequence {M;} of irreducible, {T,}-invariant finite dimensional
B-modules such that K(B,{T,}) = @, M;.

Proof. Let R denote the set of all finite dimensional {7}, }-invariant B-modules. Let

S={ACR: M(N€A=>MLN or M =N}
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S is partially ordered by C. . Suppose that {A,} is a totally ordered chain in S. It is
clear that UxAy € $. By Zorn’s lemma, there is an element Ag € <& such that if A € &
and Ag C A, then A = Ay. Since L2(X, A, ) is a separable space, Ag is a countable set
{Mi, Mo, M3, ---}. We claim that K(B,{T,}) = @ M;. Suppose that this is not the case.
Then there is a finite dimensional {7}, }-invariant B-module M such that

span{M, M1, Ma,---} # EDM,-.

Let Mo = {¢ € span{M, M1, Ma,---} : ¢ L @, M;}. Tt is clear that M, is a finite
dimensional {T, }-invariant B-module. Then { Mo} U Ag D Ag but {Mo} U Ag # Ao.
O

Definition 3.2 A sequence of finite dimensional, irreducible, {T,}-invariant B-modules
{M;} will be called a global orthogonal decomposition of K(B,{T,}) if M; L M, fori#j
and K(B,{T,}) = @, M;.

Suppose measure preserving systems (X, A, u, {T,}) and (Z,C,w, {S,}) have a common
ergodic factor (Y, B,v,{T,}), and that {M;}, {N;} are global orthogonal decompositions of
K(B,{T,}) and K(B,{S,}), respectively. For every pair (i, j) satisfying

AT, 1345, b h = 1.

choose a {T, x S, }-invariant function Fj;(z,z) in M; ® N with ||F;|| = 1. Put Fj; =0
otherwise. Since Fj; is {Ty x S, }-invariant, [ |F;(z, 2)|*dpy % wy(z, 2) is a {T, }-invariant
function of y. By ergodicity, ||Fi;||y =1 for a.e. y €Y.

Theorem 3.9 In L?(X x Z,AQC,u xgw),
{Fij : int({Tg |M1}a{59 |Nj }) = 1}
is an orthonormal basis of the space spanned by {T, x S, }-invariant functions.

Proof. Clearly the set is orthonormal. Let f be any {T, x S, }-invariant function. By
Theorem 2.8, f € K(B,{T,}) ® K(B,{S,}). Therefore, we may write f = 3_, . fij, where
fij € M;® N}. Tt is then easy to see that f;; must be {T; x S, }-invariant for all 4, j, hence
fz’j = CijF;'j for constants Cij.

O

4 Convergence Theorem

Throughout this section, G’ will be a countable amenable group. The following mean ergodic
theorem for amenable groups is well known:
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Theorem 4.1 Suppose that {T,} is a measure preserving G-action of a probability space
(X, A, p). If {®,} is any left Folner sequence for G, then for every f € L*(X, A, p),

lim — ZfT:c Pf(z)

exists in L?(X, A, ). Furthermore, P is the orthogonal projection in L*(X, A, u) onto the
space of {T,}-invariant functions.

Note that the constant functions are {T,}-invariant. Therefore, if A € A, we have
[|[P(14)]| > p(A). It follows that

. 1 1
lim —— Z (ANT, A) = nlgrgo |<I> | Z /IA 14(Tyz) dp(z)
9€Pn gED,

[ 14 PO di = IPOLIP 2 ()

Hence, for any left Fglner sequence {®,}, and any € > 0, there exists n € N and g € ®,, such
that u(ANT, 1A4) > (p(A))Z — €. We will use this fact in the next section. The following
Lemma is motivated by van der Corput’s fundamental inequality.

Lemma 4.2 Suppose that {uy : g € G} is a bounded set in a Hilbert space H, and that
{®,} is a left Folner sequence for G. If

1

li (1 , ) =0,

w0 [B, 2 P 13 |<1>m| DL D (g k)
GEDRm h,kED

then hmn—HX) ||ﬁ ZgE@n Ug“ =0.

Proof. Let € > 0 be arbitrary. Fix n. We have

1
ol 2 = ] 3 o] 25 o+ Y = B
9€EPH,

hed,

where ||¥] || — 0 as m — oco. (Since n is fixed, [(yep, hPm|/[®Pm| = 1 as m — oo,
and for g € (e, h®m, uy is represented |®,| times in the sum on the right, namely as
{Un(h-14) : h € ®}.) By the Cauchy-Schwartz inequality,

< 1 2 ol - -
|| m|| |@ | Z |(I) | Uhg |¢m| Z |¢n|2 Z <U,hg,ng>

h,ke®,

By choosing n big enough at the outset, we may have this last quantity as small as desired
for large m, so that ||¥,,|| < € for large m. Since ||¥! || — 0 and e was arbitrary, the proof
is complete.

O
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Now suppose that {T,} and {S,} are measure preserving G-actions on a probability
space (X, A, p) with T,S, = SpT, for all g,h € G, and let B C A be the o-algebra of
{Sy}-invariant sets. Let (Y,B,v) be the factor determined by B, and let 7 : X — Y
be the factor map. Note that for a.e. z € X, Ty(n(x)) = n(Tyz) is well-defined for all
g € G and forms a measure-preserving G-action of (Y,B,v). Furthermore, (Y,B,v,{T,})
is a common factor of (X, A4, u, {T,}) and (X, A, u, {S,T,}). We let {M;}, {N;} be global
orthogonal decompositions of K (B,{T,}) and K (B, {S,T,}), respectively. We also choose
global orthonormal bases {p%, - -, gojn(i)} for M; and {4%,-- -d)fl(i)} for N, i € N, in such a
way that whenever {T}, | a4, } is equivalent to {S,T} |n; }, the matrix anti-cocycles generated
by these with respect to the given bases are equal.

Theorem 4.3 If ¢ L K(B,{T,}) or v L K(B,{S,T,}), then

lim Z Y(SyTyx) =0

wam|@ |€¢
g9

in LYX, A, u).

Proof. Assume that ¢ L K(B,{T,}) (the other case is similar). We first prove that the
result holds when ¢ € L®(X, A, p). Let uy(z) = o(T,z)¢p(S,Tyx) € L*(X, A, p). For fixed
h,k € G, we have

5 ungs )
|@m| g9 9

9ED

= |<1> | Z/ (Thgx)Y(ShgThgx)p(ThgT) b (SkgThyr) dp

gEPm

= e 2 (T AT (ST 01 Ti))

gED,

9€P,,

= /(‘P(Thm)W(Tkm)) <| Bl D STutp(Syx) Sk Tt (S, $))> dp

- /(ThSDTk@E(ShTMﬁSkaE | B) du
= /E(ThSOTk¢ | BYE(ShTwpSkTri | B) d,
= /(Th X SpTh) (e @) (T % SkTr)(p @ ) dp XB pb = ap k-

By Theorem 4.1, we now have, since ¢ ® 1 is orthogonal to the {T, x S,T,}-invariant
functions,

||

ji: Qh,k = hnl H

Z T, XSlTl(90®¢)H =

ed,
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By Lemma 4.2 we have

lim Z PY(SgTyx) =0,

n—»00 |<I> | —
g

this limit in L?(X, A, u). Since pu(X) = 1 < oo, convergence will be in L'(X,A4,u) as
well. We can extend our result to ¢ € L?(X, A, i), approximating ¢ (in L?) by functions
[ € L™®(X, A, ) satisfying f L K(B,{T,}). (Recall that K(B,{T,}) = L*(X,&,p) for
some {T}-invariant o-algebra £. Thus, for any f € L*°(X,A, u) which is close to ¢ in
L2(X, A, u), f —E(f | £) € L=®(X, A, u) will be orthogonal all £-measurable functions and
be at least as close to ¢ in L*(X, A, p).)
O
Let S* denote the unit sphere in CF. If ¢!, .- &% € S*| we will denote by [¢! - - - £F] the
k x k matrix whose columns are the vectors £&. We use | - | to denote the norm on C*
and A to denote normalized Lebesgue measure on S*¥ (A (SF) = 1). &; will denote the ith
coordinate of a vector £ € SF.

Lemma 4.4 For any 6 < 1 and k € N, there exists ¢ = €(d,k) > 0 such that for any
E C S* with A\ (E) < €, there exist &, - -, &% € S¥\E with the property that for any £ € CF,
€' €F17¢], > Ol€]k-

Proof. Suppose é < 1 and k € N are given. Let {e; : 1 <i < k} be the natural coordinate
basis for S¥ (so that I, = [e1 - - - ex] is the k x k identity matrix). For some v > 0, we will
have that whenever |§; —e;| < v, 1 < i <k, |[£1 ---Ek]Tf|k > §|¢|k. Clearly there is some

€ > 0 such that for any E C S* with A\ (E) < ¢, there exist & € S¥ \ E with |§ — e;| < v,
1<i<Fk.
O

Theorem 4.5 Suppose that M(g,y) = [mis(g,y)] is an anti-cocycle on (Y, B,v,{T,}), and
that N(g,y) = [nj:(9,y)] is an anti-cocycle on (Y, B,v,{T,}). For any a(y) € L>(Y,B,v),
1<i,s<m,and1<t,j<n,let

03ta() |q) | > a(Tyy)mis(9,y)nje(9,y).-
9gEDa

Then limy o0 5}, exists in LY(Y,B,v).

Proof. Let B™, B™ be the Borel o-algebras on S™ and S™ respectively. Let
X=YxS8"xS" B=BB"®B", and i = v x \™ x \".

Define measure-preserving transformations {R, : g € G} on X by

Ry(y,€,m) = (Tyy, M(g,9)&, N(g,y)n)-
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One may check that Ry, = RyRp, that is, {R,; : g € G} is a G-action. Suppose now that
a(y) € L®(Y,B,v). For 1 <i <m, 1 < j < n, define &; € L>(X,B,1) by &;(y,&n) =
a(y)&imn;. Then

§ii(Re(y,&m)) = a(Tyy)[M(g,y)ELIN (9, y)nl;
= ayy) Y mis(g,y)n;i (9, y)am-

Hence, by Theorem 4.1,

hm Z(Pz]d gs’ﬂt = hm |’~I> | Z 61] y § 77)

exists in L'(X,B,7i). Let ¢ = ¢(0,m) (see Lemma 4.4). Let Dy be so large that whenever
d,d > Dy, we have

2
3
1S wtaw) - otfaam) datw.&m < .
s,t
Let Pijd be the m X n matrix [(p?]t'd(y)]lﬂsﬂm’ 1<t<n- We have
62
[ 1€ @uaty) = o0 )l dmty,&.m < =,

which implies that

m ({5://IET(¢ijd(y) — wijar ()| dv(y)drn(n) > %}) <e.

By choice of €, there exist column vectors &, ---,£™ € S™ such that
) [ )2 1€ (pijay) — pija )l dv(y)ddn(n) < 55 1<r<m
(i) |[¢*---€m17¢|,, > §[€|m for all £ € C™.

Since all norms on a finite dimensional space are equivalent, there exist numbers K; and K>

such that
K (Z |az'|2> > lai| > Ko (Z |a,~|2>
r=1 r=1 r=1

1/2

Therefore,

/ / Zl "(pijay) — pija (y))nl dv(y)drn(n)
> Kz//|[£1 €™ (pijaly) = pijar W))nl,,, dv(y)dra(n)
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v

2 [ [ 160w = ol dvtg)an,m)

2K, / / Z|[<Pud — wija (¥))n]s| dv(y)drn(n)

Y

2 K1 ‘Pz]d = @ja W)me| dv(y)din(n),

which implies that >; , cpf]'?d(y)nt converges in LYY x S, B® B",v X \,), 1 < s < m.
Another application of Lemma 4.4, with k = n, gives by the same steps convergence of
@iia(y) in LYY, B,v), 1< s <m, 1<t <n.

O

We now suppose M = M, € {M;} and N’ = N,, € {N;} are elements of the global
orthogonal decompositions having global orthonormal bases {¢1,-+,¢m} and {¢1,---,9¥n}
(we have suppressed the superscripts for convenience). Let [m;s(g,y)] and [n;:(g,y)] be the
induced anti-cocycles. Recall that if {T, |r} is equivalent to {S;Ty |}, then m = n and
the induced anti-cocyles are equal. In this case, we let

n
Fnlynz(xaz) FMN .’L‘ Z Z Pk ®¢k z, Z) (8)
k=1

If {T, |m} is not equivalent to {SyTy |a}, we will let Faqnr = 0. We now have
Proposition 4.6 If (Y,B,v,{T,}) is ergodic, then for any ¢ € M and any ) € N,

d—>oo |(I)d| Z S T IL') (/(SD®E) FM,N d:“y X ,U'y) FM’N(SL',.'L')

in LY(X, A, p). (Herey = w(x).)

Proof. Suppose first that ¢(z) = a(x)p;(x), ¥(z) = b(x)y;(x), where a(z), blx) €
L>(X,B,u). Then

P(Ty)(SyTyz) = a(Tyw)b(Sy Ty) Typi(2)th; (S Ty)-
Since b is {S, }-invariant, we may write a(T,z)b(S,T,x) = ab(T,z). Setting
1 -
Sozs_]td(m) = (}T Z ab(Tgm)mis(gam)njt(gam)a
g€@q
{gofj'?d : d € N} will be uniformly bounded in L*®(X, B, u), and, for fixed i,j,s,t will

converge, by Theorem 4.5, to a function go;‘-‘]’? as d — oo, hence

lim Z P(SgTyx)

d—oco |‘I>d| frry
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= dlinc}oz Z G/b Tx)mzs(ga )n]t(g: ) @s(x)wt(iﬁ)
8,t gDy

= hm Z‘pwd m = wa;(x)%(x)%(x)
s,t

|d|

Also, the projection of ¢ ® % onto the {T, x S,T, }-invariant functions is just the projection
onto the zero- or one-dimensional subspace generated by Fa » and we have

(/(«p ® ) Famov dp X M) Fmon

= lim —Z (T, x SyT,)p @9
|g€<1>d

= lim > o d| > ab(Tyy)mis(g,y)nje(9,y) | ps @1
)t

d—oo
9€P4

= Z‘Pfj Ps @ 'th-

s,t

Hence, if {T, |m} is not equivalent to {S,T, |m}, then Fan = 0 and ¢ff = 0 for all
i, J,8,t. This completes the proof in this case. If {7}, [m} is equivalent to {S, T |m}, then
the above gives ¢t = ( [ ab(y) dv(y))di;0st, hence

n

Jm e Y i Tn = 0 ([ ) ) v

9€P, k=1
= (/(‘P ®E)FM,N dpy X Ny) Fpn(z,z).
This completes the proof for the case

o(z) = a(z)pi(z), P(z) = b(z)Y;(x), a,b € L=(X, B, ).

It is clear that the result will therefore hold for ¢ = >, a;p;, ¥ =) ;bjY;, where a;,b; €
L>(X,B,p). This is sufficient for the general case, as such functions ¢ are dense in M
(under the L? norm) and such functions ¢ are dense in N.
O
We now have the following.

Theorem 4.7 Suppose that G is a countable amenable group with a left Folner sequence
{®n}, and that {T,}, {S,} are measure preserving G-actions on a measure space (X, A, )
which commute in the sense that TySy, = SpTy for allg, h € G. Let B C A be the o-algebra of
all {S,}-invariant sets and assume that the natural factor (Y,B,v,Ty) is ergodic. Let { My},
{N%} be global orthogonal decompositions of K(B,{T,}) and K(B,{S,T,}), respectively, and
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choose orthonormal bases {p?, - - -,cpjn(z.)} for M;, and {9t - ,1%(1.)} for N;, such that the
matriz anti-cocycles for {Ty |a; } and for {SgTy |n; } with respect to these bases are identical
whenever {T, |, } s equivalent to {S,T, |n;}. Let Fij € M; @ N} be given by

mi)
Fij(,2) = ) ¢k @ ¢i(,2)
k=1
if {Ty |m.} is equivalent to {SyTy |n;}, and zero otherwise. Let w: X — Y be the natural
projection. Then for any ¢, ¢ € L2(X, A, 1),

g 3 TS ) = X ( [000) T duy x ) Pt

9€®, 4.3
in LY (X, A, ). (Where y=n(z).)

Proof. We can approximate ¢ arbitrarily closely in L?(X, A, u) by a function of the form
Yo+@1+---+@m, where g L K(B,{T,}) and ¢; € M;,1 < i <m, and a similar statement
is true of 1. Therefore the result follows from Proposition 4.6 and Theorem 4.3.
O
Remark. Since B consists of the {S, }-invariant sets in A, (Y, B, v, {T;}) will be ergodic if
and only if there are no non-trivial measurable sets which are both {1}, }- and {.S, }-invariant,
that is, when {T, Sy : (g,h) € G?} is an ergodic G*-action on (X, A, p).

We now come to our main result.

Theorem 4.8 Suppose that G is a countable amenable group and {®,} is a left Folner
sequence for G. Suppose that (X, A, p) is a probability space, and that {Ty} and {S,} are
measure preserving G-actions on X with TyS, = SpTy for all g, h € G. Then for any o,
w e L2(X7‘A‘7u)’

lim Z Y(SyTyx)

n—o0 |<I) |
9€®n
exists in L' (X, A, p).

Proof. By Theorem 4.7 and the Remark above, the limit in question exists whenever
({TySk : (g,h) € G?}) is an ergodic G*-action on (X, A, ). For the general case, let
C C A be the o-algebra of sets which are both {T,;}- and {S,}-invariant and denote the
factor associated with C by (Z,C,~). Denote by w : X — Z the natural projection, and by
{p. : z € Z} the decomposition of p with respect to Z. Then for almost every z € Z, the
measure-preserving GZ-action {T,S,} on (X, A, pi.) is ergodic. Suppose ¢, 1 € L*(X, A, p).
Then ¢,,v, € L*(X,A,pu,) a.e. We will assume that ||¢]|,, |[¢||. are bounded by some
number N. This assumption is without loss of generality since such functions are dense in
L?*(X, A, ). For a.e. z we have existence of the limit

f2(z) = lim Z P(SyTyx)

n—>oo|(1> | et
g
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in LY(X, A, p1;). Clearly {f. : z € Z} is a measurable family, and [ |f,| du, < N? a.e. Let
=/ o [z @7(2). Then, by the dominated convergence theorem,

lim ﬁ S Ty i(SyT,) — £()| du(z)

n— o0
gED,

n—o0

~ tm [ [ @gezénso(Tgw)«z}(Sngw)—fz(m) dpizdy(z) = 0.

5 Positivity of the Limit and Multiple Recurrence

As before, we assume that {T;} and {S,} are commuting measure preserving G-actions on
(X, A, ), and we let B C A be the sub-o-algebra of all {S, }-invariant sets. Then there are
sub-o-algebras By and Bgy such that

LQ(XJ BT7P‘) = K(B, {Tg}) and L2(X7 BST;H) = K(B,{Sng})
We will let P, (f) = E(f | Br), Pa(f) = E(f | Bsr) for f € L2(X, A, ).

Definition 5.1 Suppose {®,} is a left or right Folner sequence of G. For any I' C G,
define

d(T') = lim sup LN @y and d(T') = lim inf rn |

d(G) and d(G) will be called the upper and lower density of T with respect to {®,}.

Definition 5.2 Suppose G is a discrete group. A subset A C G will be called left (right)
syndetic if there ezists a finite set K C G such that U,cp gA =G (U,ex A9 =G).

With respect to any left Fglner sequence {®,}, d(A) > 0 for any left syndetic set A C G.
(Otherwise, passing to a sub-Fglner sequence {®,,}, we may assume that d(4) = 0. It
is clear from the definitions that d(C U B) < d(C) + d(B), and that d(gC) = d(C) for
all B,C C G and g € G. We have G = g1AU --- U g A, so that d(G) < kd(A) = 0,
a contradiction.) Conversely, if A C G has the property that for any left Fglner sequence
{®,}, there exists n € N such that AN®,, # ¢, then A is necessarily left syndetic. (Suppose
A is not left syndetic. Let {®,} be any left Fglner sequence. For any sequence (h,,)22, C G,
{®ph,} will be a left Fglner sequence as well, since for any ¢ € G, n € N, we have
|9(®nhn) N ®phy| = [(g8n N ®p)hy| = |gPn N ®,). Since A is not left syndetic, for every
n € N we have G # @, A. Letting h, € G\ ®,'A, we have AN ®,h,, = ¢ for all n € N.)

The proof of the following lemma makes use of the fact that if {®,} is a left Fglner
sequence and g1,---,gr € G, then setting ® = &, N g1 P, N---N g1 Py, {®,,} will be a
left Fglner sequence as well. (Simply note that if |g;®, N ®,], |hgiPn N P,| > (1 — €)|Dy|,
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1<i<k, and |h®, N ®,| > (1 — €)|®y]|, then |A®), N @, | > (1 — (2k + 1)¢)|®,.) Also, in
order to formulate the lemma in its full strength, we introduce the following notation. For
any (finite or infinite) sequence (g;) C G, we let

FP((9:)) = {9gni9ns " gny : M1 <na < -++ <myp}.

Lemma 5.1 Suppose that {T,} is a measure-preserving G-action of a countable amenable
group G on a probability space (X, A, 1), and that {®,} is a left Fglner sequence for G. For
any set A € A, u(A) >0, and any §, 0 < § < 1, there exists a sequence (h;)2; C G with
the property that for every h EFP((h )2 ) h e <I> for some n € N, and such that for all
JjEN,

w ﬂ T, 'A| > (6u(A))2j.

ne{eyurP((hai,)

Proof. Choose n; € N and hy € ®,,, such that ,u(AﬂTh_llA) > 6(/;(A))2 (see the discussion
after Theorem 4.1). Put 4; = (ANT; 'A). Choose ny € N and hy € (®pn, N hy ' ®p,) such

that p(A1 N T A1) > 6(u(Ar))”. Put Ay = (41 NT;'A;). Then
WANTPANTPANT,E A) > 6% (u(A))
Choose n3 € N and
hs € (Bp; Ny B, Ny @y, N (hiho) 1 ,,)

such that u(A; NT; ' Ay) > 6 (M(AQ))2. Continuing in this fashion, we get what we need.
O

Theorem 5.2 Suppose that G is a countable amenable group with a left Folner sequence
{®n}. Suppose {S,}, {T,} are measure preserving G-actions on a probability space (X, A, p)
with Ty Sy, = SpTy for any g, h € G. Then for any set A € A, u(A) >0,

lim > WANT, AN (S,T,) " A) >

n+m|@| =
9

Proof. Let f =14, fi = P1f, and fo = Pyf. (These projections were introduced at the
beginning of this section.) By Theorems 4.3 and 4.8, we know that

lim > WANT, AN (S,T,) ' A) = lim —— Z /fT fi SyT, f> dp.

n—oco |(§ |
9E€EPR gED,

(In particular, this limit exists.) We will show that

lim Z/folsTf2du>0

n%m|@| -y
g
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Recall that P; is an orthogonal projection. Since

/Pl (f1iz:p1(2)=0}) dpt

/fl Lie:f1(2)=0} du =0,

/ a1 (2)=0} dpr

fi(z) # 0 for a.e. x € A. Similarly fo(z) > 0 for a.e. x € A. Therefore, there exists some
a>0,and a set A’ C A, u(A") > 0, such that fi(z)f2(x) > a for all z € A’. Furthermore,
there exists § > 0, and a set B C Y, v(B) = 2{ > 0, such that for all y € B, pu,(A") > 5. It
follows that [ ff1f2 dpuy > af for all y € B. Notice that &, , and 8 do not depend on the
Fglner sequence {®,}.

Let € = %. We may approximate f; by a function ¢; which is contained in a finite-
dimensional {7, }-invariant B-module M. Likewise, we may approximate f> by a function
@2 which is contained in a finite-dimensional {7} S, }-invariant B-module N'. We make these
approximations so close that there exists a set B’ C B, v(B') > &, such that for all y € B,
[lfi — ¢1lly < € and ||f2 — ¢2||y < €. It is not difficult to see, since M and N are finite-
dimensional, that there exists a finite family of functions hy,---,h; € L?(X, A, u) having
the property that for a.e. y € Y and all g € G, there exist k1 = k1(g,y) and ko = k2(g,y)
such that ||Ty¢1 — hi, ||y < € and ||SgTyd2 — hi,|ly < €.

Let M =1? + 1. By Lemma 5.1, there exists v > 0, depending only on u(B') and M,
and g1,---,9m € G, with u(B'NT,'B'N---NT, 'B') > v, such that 9;9; " € ®, for some
n € N whenever 1 <i < j < M. (Let g; = hihy - - - h;, where the h;’s are as in that lemma.)
Fixy e B'NT,'B'N---NT,,!B'. There exist numbers i = i(y), j = j(y), 1 <i < j < M,
such that k1(g;,y) = k1(g;,y) and ka(g;,y) = k2(g;,y), so that

[|Ty; b1 — ng¢1||y < 2e and ||Sg, Ty, ¢2 — ngng¢2||y < 2e.

We now have ||¢; _ngg{1¢1||Tgiy < 2e. Also, since T,y € B', we have ||¢1 — fi||z,,, <€
On the other hand, since Ty,y € B’, we have

Ty, g1 1 = Ty g1 0ullay,y = [Ty fr — To;01lly = |1 = ullzy,y <e

This, finally, gives ||f; — nggi—l fillr,,y < 4e. Similarly, || f2 — nggi—l nggi—l follr,,y < 4e. Let

g=g(y) = gj(y)gz._(;). It follows that, for y € B'NT,'n---NT, 'B',

/f Tgfl Sngfz d,uy > /ff1f2 dp’y — 8 > %

Let C ¢ B'NT,;'B'N---NT, B’ satisfy v(C) > 31z and have the property that go = g(y)
is constant on C'. Then

apy
[ 1 Tooti SoToo o du> 5275 >0
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Recall that go € ®,, for some n € N. Let

{ /foISszdu>;J€;}

Note that fi and f» do not depend on the arbitrary left Fglner sequence {®,}, and we have
found n € N and g9 € ®, NT. It follows that I" is left syndetic, so that d(T") > 0 with
respect to every left Fglner sequence (in particular, with respect to {®,}), and

LAY

lim WZ/fTﬁSszdp>d()

n—oo
9€®,

We now have the following corollaries.

Corollary 5.3 Under the conditions of Theorem 5.2, for any f € L*(X, A, n) with f >0
and f Z0, we have

11m—ZTfSTf¢O

n— 00 | g€<1>

Corollary 5.4 Under the conditions of Theorem 5.2, for any set A € A with u(A) > 0,
there exists v > 0 such that the set

Ry ={g: w(ANT, AN (S,Ty) 1 A) > 7}
is both left and right syndetic.

Proof. Suppose that for every k € N, Ry, is not left syndetic. Then there exist left
Fglner sequences {@%k)} such that R/, N o) = ¢ for all n,k € N. For some sequence
ng — 00, {®,} = {<I>(nli)} will be a left Fglner sequence. For this sequence we will have

lim wANT, AN (T,S,) " A) =0,

contradicting Theorem 5.2. Therefore, R, is left syndetic for some y > 0.
By the same token, we have some a > 0 such that the set

Sa={g: W(ANS; AN (S,T,) " 4) > a}

is left syndetic. One may check that R, = S, !, so that R, is right syndetic.
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6 Applications to Combinatorics

In this section, we will use the recurrence theorem of §5 and an amenable group version of
Furstenberg’s correspondence principle to prove the following combinatorial theorem, which
is a density version, for amenable groups, of a Ramsey-theoretic result for general groups
proved in [1] (for Furstenberg’s correspondence principle, see [8, page 73]).

Theorem 6.1 Suppose that G is a countable amenable group and that E C G x G has
positive upper density with respect to a left Folner sequence {®,} for G x G. Then the set

{9 € G: there exists (a,b) € G x G such that {(a,b), (ga,b), (ga,gb)} C E}
is both left and right syndetic in G.

Let us start with an amenable group version of Furstenberg’s correspondence principle.
Let Q = {0,1}9*¢. With the product topology, §) is a compact metrizable space. Elements
of 2 are given by 1g for subsets E C G x G. Commuting G-actions {T,} and {S,} may be

defined on € by (S,£)(g1,92) = &(91,929) and (T4€)(91,92) = £(919,92)- One then has the
following:

Proposition 6.2 Suppose that G is a countable amenable group and {®,} is a left Folner
sequence for G x G. Suppose E C G x G. Let X = {T,Sp1g: g,h € G}. If

- ENnad,
d(E) = limsup 1E0 @)

nooo | Pl

>0,

then there exists a {Ty}- and {S,}-invariant probability measure p on X such that

p({neX: nlee =1}) >0.

Proof. Let A ={n € X : n(e,e) =1}. Ais closed and open in X, so 14 is continuous.
There exists a sub-sequence {®,,} such that
- |®,, NE]|

li

=d(E

exists. Then )
lim —— > 14(S5, Ty 1) = d(E).

k—o0 |¢nk| (91,92)Eq)nk

Since C(X) is separable, one can choose a countable dense set & C C(X) with 14 € & and
a further subsequence (still written {®,, }) such that the limit

im —— Y f(SpTle) = I(F)

k—o0 |(I)nk | (91 ,gz)Eq’nk
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exists for all f € §. One may then check that I is a bounded, positive linear functional and
is therefore given by integration against a positive finite measure p on X. It is clear that
u(A) = d(E) > 0 and that p is {Sy}- and {T} }-invariant.

O
Proof of Theorem 6.1. Let { = 1g and X = {T,Spé: g,h € G}. Let p be an {S,}-
and {7, }-invariant measure on X with p(A) > 0, where A = {n € X : n(e,e) = 1}. By

Corollary 5.4, the set

R={g€G: n(ANT,; AN (S,T,)""4) > 0}

is both left and right syndetic. For g € R, choose £ € ANT; ' AN(S,T,)~"A. Since A is open
and £ € {S,Th€: g,h € G}, there exist a, b € G such that S,T,& € (ANT; P AN(S,T,) ' A).
Therefore

&(a,b) = &(ga, b) = &(ga, gb) = 1,

which means {(a,b), (9a,b), (ga, gb)} C E.
O

Corollary 6.3 Suppose that G is a countable amenable group and that F C G x G has
positive upper density with respect to a right Folner sequence {U,} for G x G. Then the set

{9 € G: there exists (a,b) € G x G such that {(a,b), (ag,b), (ag,bg)} C F}
is both left and right syndetic.

Proof. Let E = F~! and ®,, = ¥! and apply Theorem 6.1.
O
We remark that configurations of the type appearing in Corollary 6.3 cannot, in general,
be found in a set E which is of positive upper density with respect to a left Fglner sequence
{®,}, even if d(E) = 1. For example, let G be an amenable group having the property that
for any finite subsets E, F C G, with e ¢ F, there exists h € G such that (h"*EhNF) =0
(the set of permutations of N which move finitely many elements is such a group). Let {®,}
be any left Fglner sequence for G x G. We will construct a sequence (h,)$2; C G such that
for all n € N, there exists no configuration of the form {(a,b), (ag,b), (ag,bg)} in ®,(e, hy).
(Note that {®,(e, hy,)} is again a left Fglner sequence for G x G.) Let

L, ={g € G : there exists h € G such that (g,h) € &, or (h,g) € &,}.

Ly, is finite, so there exists hy, € G such that (h,'(L;'Lyn)hnN(L; Ly \ {e})) = 0. Suppose
there exists (a1,a2) € G X G, and e # g € G, such that

{(ah a2hn)7 (algv a2hn)7 (algv a2hng)} C q)n(ev hn)

Then a1,a19 € Ly, so that g € (L,,'Ly\{e}). Also ashy,ashng € Lphy,, so that ay € L, and
g € h,; ' (L, L,)hy, a contradiction. One may check, incidentally, that this same construc-
tion gives a counterexample to existence of configurations of the type {(a,b), (ag,b), (a,bg)}.
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We do not know, however, the answer to the following;:

Question Suppose that G is a countable amenable group and that E C G x G has positive
upper density with respect to a left Fglner sequence for G x G. Does E necessarily contain
a configuration of the form {(a,b), (ga,b), (a, gb)}?

It is not difficult to see that the answer to this question is yes in the case of an abelian
group G. In fact one can prove that if G is a countable abelian group and £ C G x G has
positive upper density with respect to a Fglner sequence {®,} for G x G then the set

{g € G : there exists(a,b) € G x G such that {(a,b), (g + a,b), (a,g +b)} C E}

is syndetic in G. (One can in fact prove this via Corollary 5.4 and Proposition 6.2 by
considering the commuting shifts (T3€)(g1,92) = (g1 + 9,92) and (S4&)(91,92) = (91 —
g,92 + g).) We will now use this result for abelian groups to prove a configuration theorem
for finite groups.

Corollary 6.4 For every € > 0 there exists ko = ko(€) such that if G is any finite group of
order n > ko and B C G X G satisfies |B| > en® then B contains a configuration of the form

{((I,b), (gaa b)a (a7 gb)}; g 75 e.

Proof. Let € > 0 be given. Our first claim is that there exists mg such that for all
m > myg, if B C {1,2,---,m} x {1,2,---,m} and |B| > em? then B contains a triangular
configuration {(a,b), (g + a,b),(a,g +b)}, g # 0. (Suppose this is false. Then for some
increasing sequence (my)22, there exists, for all n, B, C {1,2,---,mp} x {1,2,---,mp}
containing no such triangle {(a,b), (g + a,b), (a,g+b)} with |B,| > em?2. It follows that for
any rapidly enough increasing sequence (a,)S2,, the set E = Uy~ ((an,an) + Bp) contains
no such triangle. According to the discussion immediately preceding this corollary (applied
to G = Z), this contradicts the fact that d(E) > e with respect to the Fglner sequence {®,,},
where ®,, = {a, + 1,a, + 2, -+, a, + m,}>.)

Our next claim is that if ¢ > 1 then there exists tg = to(g) such that for all k > o,
if BC CFx CF (here C, is a cyclic group of order q) and |B| > e¢®* then B contains a
configuration of the form {(a,b), (g +a,b), (a,g+b)}, g # 0. (Suppose now that this is false.
Consider the group

G= @?ilcéz)a

where for all ¢ C’,Si) is a cyclic group of order ¢q. Let S, = C,gl) X e X C(S") C G. For
some increasing sequence (k,)%2,, there exists, for all n, B, C Sk, X Sk, containing no
configuration {(a,b), (g + a,b), (a,g +b)}, g # 0, with |B,,| > eg®*. Tt follows that for any
sparse enough sequence (g,)32; C G, the set E = ;> ; ((gn,gn) + Bn) will contain no
configuration {(a,b), (g + a,b),(a,g +b)}, g # 0. This contradicts the fact that d(E) > €
with respect to the Fglner sequence {®,}, where ®,, = (gn,gn) + (Sk,, X Sk..)-)

Let M = [}, ¢"(@ . Since any finite abelian group is isomorphic to a direct sum of
cyclic groups, M has the property that any abelian group A of order |A| > M has either
a cyclic subgroup of order m, where m > myg, or a subgroup isomorphic to Cf, where
2 < qg<mg and k > to(q).
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We need now the following group theoretic fact: for p prime and n > 2, any p-group of
order pz™™=1) has an abelian subgroup of order p™ (see, for example, [13], p. 120). In light
of this it is easy to see that there exists a number ky having the property such that any
finite group of order greater than k¢ has an abelian subgroup of order greater then M.

Suppose now that G is a finite group of order n > ko and B C G x G satisfies |B| > en?.
G contains an abelian subgroup of order greater than M, and this abelian group contains
therefore a group A which is either a cyclic group of order m, where m > my, or a subgroup
isomorphic to C¥, where 2 < ¢ < mg and k > ko(q).

For some (hy,hy) € G x G, we will now have |(4 x A)(hy,hs) N B| > €| A%, Let

E = {(al,ag) eAxA: (alhl,a2h2) (S B}

Then |E| > €|A|?, so E contains a configuration {(z,y), (97,v), (z,9y)}, g # 0. Letting
a = zh; and b = yhy we have {(a,b), (ga,b), (a,gb)} C B.
O
One may notice that the configurations of Corollary 6.4 come from the existence of a
large abelian subroup of G. We should therefore mention that a much stronger statement
than that given in the corollary (in particular, an analogous statement in G* for arbitrary
k € N) may be obtained using a result of Furstenberg and Katznelson ([10], Theorem 9.3),
which (among other things) guarantees the existence of all kinds of configurations in sizeable
subsets of finite abelian groups. We will not concern ourselves here with the details. At any
rate, the triangular configurations in G x G guaranteed by Corollary 6.4 yield the following
configurations in G.

Corollary 6.5 For every € > 0 there exists ko = ko(€) such that if G is any finite group
of order n > ko and B C G satisfies |B| > en then B contains a configuration of the form

{h,gh,hg™'}, g #e.

Proof. Let k = ko(e) be as in Corollary 6.4 and suppose that G is a finite group with
|G| =n > ko and B C G with |B| > en. Let

C={(a,b) e GxG:ab”' € B}.

Then |C| = n|B| > en?, so C contains a configuration {(a,b), (ga,b), (a,gb)}, g # e. That
is, {ab1,gab !,ab"1g7!} C B. Letting h = ab~! we are done.
O
We now indicate how one may in the same fashion get Roth’s theorem on arithmetic
progressions of length 3 ([15]).

Corollary 6.6 For any € > 0 there exists ng = no(€) such that for all n > ng, if B C
{1,2,---,n} and |B| > en then B contains an arithmetic progression of length 3.

Proof. Let ng(e) = mo(g), where my is as in the first claim of the proof of Corollary
6.4. Suppose now that n > ng and B C {1,2,---,n} satisfies | B| > en. Let

C={(a,b):1<b<a<n,a—be B}.
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Then one may show that |C| > %, so that C contains a configuration {(a,b), (¢+a,b), (a,b+
9)}. In other words, letting £ = a — b — g, we have {z,z + g,z + 2g} C B.
O
By restricting Corollary 6.5 to the case of G abelian and of odd order, we get the following
theorem of Brown and Buhler ([3], [6]).

Corollary 6.7 For every € > 0 there exists ko = ko(€) such that if A is any finite abelian
group of odd order n > ko and B C A satisfies |B| > en then B contains distinct elements
z,y,2 with t +y = 2z.

Proof. Apply Corollary 6.5, letting = gh, z = h, and y = hg™!

since A is of odd order.

, noting that = # y

O

7 Topological Recurrence Theorem

As an application of Theorem 6.1, we prove in this section a topological recurrence theo-
rem for three commuting actions of a countable amenable group G. The proof is along the
lines of some proofs of van der Waerden’s theorem on arithmetic progressions, or its natural
generalization in Z", Griinwald’s theorem (see, eg., [8]). The idea in such proofs is to induc-
tively extend the validity of a topological multiple recurrence assertion from n commuting
Z-actions to n+1 commuting Z-actions. However, when Z is replaced by a non-commutative
group G, the induction already fails when n = 2. Indeed, in [1], counter-examples are given
in some special cases, where G is a free group, to what might have looked to be possible
non-abelian generalizations of van der Waerden’s theorem. Specifically, there appears there
a result, valid for two G-actions, the natural extension of which to three actions fails. It
is therefore pleasing, and somewhat surprising, that for amenable groups, Theorem 6.1 fills
the gap in the proof in going from two to three actions. Indeed, it will be easy to see that
if one were to be given the analog to Theorem 6.1 for n dimensions, the methods of this
section would give a topological result for n + 1 actions, n € N. (Of course, we do not have
such an analog for Theorem 6.1 at the present time, even for n = 3.)

Theorem 7.1 Suppose that G is a countable amenable group and that (X, p) is a compact
metric space. Suppose that {T,}, {S,}, and {Ry} are G-actions by homeomorphisms on X
such that TSy, = SpTy, TRy = Rp1Ty, and RySy, = SpRy for all g,h € G. Then for every
€ >0, the set

Je={9 € G: there exists v € X such that p(z, Ryz) < €,
p(z, RgSyx) <€, p(x, RyS,Tyx) < €}
is both left and right syndetic in G.

Proof. We may, by passing to a closed subset of X if necessary, assume that X is minimal
with respect to the G3-action {R;T,Sy : f,g9,h € G}. We claim that for any open set
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U C X, there exists a set H, which is both left and right syndetic in G, such that for all
g € H, there exists z € U with {z,S5,2,5,T2} C U. We now prove the claim.

Let U C X be open. Find z € U and € > 0 such that B(z) CU. Let Y C X be a
closed set which is minimal with respect to the G%-action {S,T : g,h € G}. One may
check that U,cq RyY is {Ry}-, {S}-, and {T}-invariant, and is therefore equal to X. It
follows that for some go € G, Ry B.j2(x) NY # ¢. Let 6 > 0 be so small that if y,y' € Y,
with p(y,y') < 4, then p(Ry,y, Ryy') < 5. Let U' C R "B (x) N'Y be an open set in Y of
diameter less that 6. Let yo € Y. Since the action {S;T} : ¢,h € G} is minimal on Y, the
set

R={(9,h): S;Thyo € U'}

is left syndetic in G x G, and therefore of positive lower density with respect to every left
Folner sequence of G x G. It follows from Theorem 6.1 that the set

H = {g € G : there exists (a,b) € G x G such that {(a,b), (ga,b), (ga,gb)} C R}

is both left and right syndetic in G. For g € H, set y = S,Tpyo € U’, where

{(aa b)a (gaa b)a (ga, gb)} C R.

Then Syy € U’ and S,Tyy € U’, so that, letting z = Ry, y, we have z € B./2(x), p(z, Sy2) <
€/2, and p(z,S,Tyz) < €/2. Therefore {z,S,z,S,Tyz} C U, establishing the claim.

Let € > 0, and let {®,} be any left Fglner sequence for G. Choose zy € X arbitrarily.
In what follows, “small” will mean “of diameter less that €/2.” Let Uy be a small open
set containing z¢. By the claim proved above, there exists a set Hy C G, which is left
syndetic, such that for every g € Hy, there exists z € Uy with {z,S,2,S5,T,2} C Up.
Since any left syndetic set intersects a member of every left Fglner sequence, we may find
ng € N and hy € ®,, N Hy. There exists yo € Uy with {yo, ShoY0, ShoTho¥o} C Up. Put
T = R,jolyo and let U; be a small open set containing z; such that for every z € Uy, we
have {Rho.’lf,RhOShOSU,RhOShOThOIE} C Up.

Suppose now that we have chosen small open sets Ug, Uy, - - - , Uy containing points xg, z1, - - -

and hg, h1,---,h4—1 € G, ng,n1,---,n¢4—1 € N such that whenever 0 < i < j <t we have

(a) h,',j = hihi+1 .- 'hj,1 € (Dnj_n and

(b) {Rhi,]-xaRh,-,jSh,-,jx;Rhi,j Shi,jThi,jx} CcU;for all z € Uj.

We show now that we can continue this choosing. By our claim there exists a set Hy, left
syndetic in G, such that for all g € Hy, there exists z € X such that {z, 5,2, 5,T,2} C Us.
For every n € N, let

@ =&, Nh " 8,0 (hy_ahy 1) @, N---N (hohy - hy_1) 7 D,

Then {®)} is a left Fglner sequence for G, and we may, therefore, find n, € N and h; €
®; N H;. There exists y; € Uy with {ys, Sh,yt, Sh,Th,ye} C Us. Put 2441 = R,;lyt. Let
Uit1 be a small open set containing z;41 such that for all x € Ui, we have h; 41 =
hihz'—H ---hg € (I)n” and

{Rh¢$7RhtShtxaRhtShtThtw} C Ut-
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It follows that if 0 <4 < t and = € U1, then
{Rhi,t+1x7 Rhi,i+1 Shi,t+1x7 Rhi,t+1 Shi,t+1 Thi,t+1$} c Ui.

We have therefore established by induction that this process may be continued indefinitely.
By compactness of X, we will eventually have p(z;,z;) < €/2 for some ¢ < j. We then will
have hi,j = h,’h,’.{.l s hj_l S @n]._l, and

p(ijRhi,jxj) < €5p(xj5Rhi,jShi,jxj) < eﬂp(mj)Rhi,j Shi,jThi,jxj) <eg,

so that h;; € J.. Therefore, as we have shown that the set J, intersects non-trivially any
arbitrarily chosen left Fglner sequence {®,}, it must be left syndetic. Right syndeticity is

proved similarly.
O

Corollary 7.2 Suppose that G is a countable amenable group, r € N, and that G xG x G =
U::1 C;. Then the set

{g € G : there erists 1,1 <i<r, and (a,b,¢c) € G x G x G, such that

{(a,b,¢),(ga,b,¢), (9a, gb, c), (9a, gb, ge)} C Ci}
is both left and right syndetic in G.

Proof. Let Q = {1,2,-- -,r}G3. We may choose a metric p on 2 generating the product
topology such that for v,n € Q, p(v,n) < 1 if and only if y(e, e, e) = n(e, e,€). Commuting
G-actions by homeomorphisms {R,}, {S,} and {T,} can be defined on Q by Ryv(91, g2, 93) =

v(919,92,93)> Sgv(91,92,93) = (91,929, 93), and Tyy(g1,92,93) = (91,92, 939). Let £ be
the element of Q defined by &£(g1, g2, g3) = ¢ when (g1, g2,93) € C;. Let

X = {RgSth§ 1g,h, k€ G}

By Theorem 7.1 there is a set H, which is both left and right syndetic in G, such that for
all g € H, there exists x € X with p(z, Rgz) < 1, p(z, RyS,x) < 1, and p(x, Ry S,Tyx) < 1.
Suppose that ¢ € H, and let x € X have the properties just mentioned. There exist
a,b,c € G such that y = R, SpT.£ is so close to x that p(y, Rgy) < 1, p(y, RgSgy) < 1, and
p(y, RySyTyy) < 1. It follows that

&(a,b,c) = &(ga, b, c) = &(ga, gb, ¢) = &(ga, gb, gc).

In other words,
{(a,b,¢), (ga,b,c), (ga,9b, ), (ga, gb, go)} C Cs,

where i = £(a, b, ¢).
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