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1. INTRODUCTION

What is common between the invertibility of distal maps, partition reg-
ularity of diophantine equation x — y = 22, and the notion of mild mixing?
The answer is: idempotent ultrafilters, and the goal of this survey is to con-
vince the reader of the unifying role and usefulness of idempotent ultrafilters
(and, especially, the minimal ones) in ergodic theory, topological dynamics
and Ramsey theory.

We start with reviewing some basic facts about ultrafilters. The reader will
find the missing details and more information in the self-contained Section
3 of [B2]. (See also [HiS| for a comprehensive presentation of the material
related to topological algebra in the Stone-Cech compactification).

An ultrafilter p on N = {1, 2, ...} is, by definition, a mazimal filter, namely,
a nonempty family of subsets of N satisfying the following conditions (the first
three of which constitute the definition of a filter):

(i) O ¢ p;

(ii) A€ pand A C B imply B € p;

(iii) A€ pand B € p imply AN B € p;

(iv) (maximality) if r € N and N = A; U Ay U ... U A4,, then for some i,
1< <, Az € p.

The space of ultrafilters, denoted by SN, and equipped with appropriately
defined topology, is nothing but Stone-Cech compactification of N and plays
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an important role in various areas of mathematics including topology, analysis
and ergodic Ramsey theory.

In what follows we will find it useful to view ultrafilters as finitely-additive,
{0,1}-valued probability measures on the power set P(N).

Given an ultrafilter p € ON, define a mapping p, : P(N) — {0,1} by
up(A) =1 & A € p. It is easy to see that u,(0) = 0, p,(N) = 1 (fol-
lows from (i), (iv) and (ii)), and that for any finite collection of disjoint sets
Ay, Ay, ..y Ap, one has (Ui Ai) = D0, pp(A;). Indeed, note that if none
of A; belongs to p, then both sides equal zero. Also, it follows from (i) that
at most one among the (disjoint!) sets A; may satisfy A € p, in which case
both sides of the above equation equal one.

One of the major advantages of viewing the ultrafilters as measures is
that one can naturally define the convolution operation which makes SN a
compact semigroup. Given two o-additive measures p and v on a topological
group G, the convolution is usually defined as p * v(A) = [, u(Ay=")dv(y).
In particular, p x v(A) > 0 iff for v-many y one has u(Ay~!) > 0. Taking
into account that a value of ultrafilter measure on a set A C N is positive iff
it equals one, we make the following definition in which for a reason to be
explained in the remark below, we denote the convolution by —+.

Definition 1.1. Given p,q € BN, the convolution p + q is defined by
p+q={ACN: {n: (A—n)€p}eq}.

In other words, A is (p + q)-large iff the set A—n={neN: m+ne A}
1s p-large for g-many n.

It is not too hard to check that p+q is an ultrafilter and that the operation
defined above is associative (see, for example, [B2], p.27).

Now we shall explain the reason for denoting this operation by +. For any
n € N define an ultrafilter u, as a “delta measure” concentrated at point n:

1, neA

w0 ={ 5 154

The ultrafilters p,,n € N, are called principal and it is clear that for any
n,k € N the convolution of u, and p; equals p,yr. In other words, the
principal ultrafilters p,, n € N, form a semigroup which is isomorphic to
(N,+) and the convolution defined above extends the operation + to the
space BN, the closure of N. At this point it will be instructive to say a few
words about the topology on AN. Given A C N, let A= {pe fN: Aep}. It
is immediate that for any A, B C Nonehas ANB=ANB, AUB = AUB.
Also, since N = SN, one has Usca A = BN, where A = {A: ACN}. It
follows that the set A forms the basis for the open sets of SN (and the basis
for closed sets too!). One can show that with this topology SN is a compact
Hausdorff space and that for any fixed p € SN the function \,(¢) =p+gqgisa
continuous self map of SN (see for example Theorems 3.1 and 3.2 in [B2]). In
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view of these facts, (BN, +) becomes a compact left topological semigroup. We
remark in passing that the operation p,(¢) = g+p is, unlike \,(q), continuous
only when p is a principal ultrafilter, and that the convolution defined above
on AN is the unique extension of the operation + on N such that A,(¢) and
pp(q) have the properties described above.

Before going on to explore additional features of the semigroup (AN, +)
that are important for us we want to caution the reader that while having
various nice and convenient properties, the semigroup (AN, +) is in many
respects an odd and counterintuitive object. First, the compact Hausdorff
space ON is too large to be metrizable: its cardinality is that of P(P(N)).
Yet, in view of the fact that N = BN, it is a closure of a countable set N.
Second, the operation + on SN is highly non-commutative: the center of the
semigroup (0N, +) contains only the principal ultrafilters. (Here the analogy
with the convolution of o-additive measures on locally compact abelian groups
fails. The reason: the ultrafilters, being only finitely additive measures, do
not obey the Fubini theorem which is crucial for the commutativity of the
convolution of o-additive measures).

By a theorem due to Ellis [El], any compact semigroup with a left-
continuous operation has an idempotent. Actually, (AN, +) has plenty of
them, since any compact subsemigroup in (SN, +) should have one and there
are 2¢ disjoint compact subsemigroups in SN. As we shall see below, of
special importance for combinatorial and ergodic-theoretical applications are
minimal idempotents, which we will define and apply later in this section.
In a way, idempotent ultrafilters in SN are, in a way, just generalized shift-
invariant measures. Indeed, if p+ p = p, it means that any A € p = p+p has
the property that {n: (A —n) € p} € p, or, in other words, for p-almost all
n, the set A — n is p-large.

It is easy to see that principal ultrafilters are never idempotent and hence,
if p is an idempotent ultrafilter, any p-large set A is infinite, as is the p-large
set {n: (A —n) € p}. As we shall presently see, the members of idempotent
ultrafilters always contain highly structured subsets which can be viewed as
generalized subsemigroups of N.

Let A € p, where p + p = p. Since

ANn{n: (A—n) € p} €p,

we can choose ny € A such that Ay = AN (A —ny) € p. (Note that this is
nothing but a version of Poincaré recurrence theorem; the important bonus
is that n; € A. By iterating this procedure one can chose no € AN (A —ny),
ng > nq, such that

Alﬂ(Al—ng):AH(A—nl)ﬂ(A—ng)ﬂ(A—nl—n2)Ep

Note that ni,n9,n1 + ny € A. Continuing in this fashion, one obtains an
increasing sequence (n;)%°; and inductively defined sets A = Ay, Ay, Ao, ...,
such that n; € A, Nit2 € Ai—l—l = A; N (A, — ni—i—l); 1=20,1,2,.... One readily
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checks that this construction implies that A contains the set of finite sums of
(mi)§2:
FS(nz);)il = {Tbil + ng, + .o+ NGy, k € N 11 <t <...< Zk}

Such sets of finite sums are customarily called IP sets (IP stands for IdemPo-
tent) and are featured in the following important theorem due to N.Hindman
[Hil].

Theorem 1.2. (N.Hindman). For any finite partition N = |J,_, C; one of
the cells of partition contains an IP set.

Proof. Fix any idempotent ultrafilter p € SN and observe that one (and only
one!) of C; belongs to it. Now use the fact proved above that any member of
p contains an IP set. [l

Let F denote the family of non-empty finite subsets of N. Noticing that
the mapping F — N defined by {i1, 4o, ..., 05} — 2 + 22 + ... 4+ 2% is 1-1
and that elements of IP sets are naturally indexed by elements of F, we have
that each of the following two theorems implies Hindman’s theorem, each
revealing yet another facet of it.

Theorem 1.3. (Finite unions theorem). For any finite partition F = J,_, C;,
one of C; contains an infinite sequence of non-empty disjoint sets (U;);en to-
gether with all the unions U;;, UU;, U ...UU;,, 41 <ip < ... < i,k € N In
addition, one can assume without the loss of generality that for all 1 € N one

has max U; < min Uj,;.

Theorem 1.4. For any finite partition of an IP set in N one of the cells of
the partition contains an IP set.

Ezercise 1. Prove that Theorems 1.2, 1.3, 1.4 are equivalent.

In the proof of Hindman’s theorem above IP sets emerge as subsets of
members of idempotent ultrafilters. One may wonder whether given an idem-
potent p and a set A € p, it is possible to find in A an IP set which is itself
p-large. It turns out that this is not always the case. For example, the mini-
mal idempotents which we will define below, can not have this property. The
following theorem shows that, nevertheless, any IP set is a support of an
idempotent.

Theorem 1.5. For any sequence (x;);en in N there is an idempotent p € SN
such that FS((;)ien) € p.

=n
natural topology of fN). Clearly, I is compact and non-empty. It is not hard
to show that I is a subsemigroup of (AN, +). Being a compact left-topological

semigroup, I' has an idempotent. If p € I' is an idempotent, then T =T 3 p

Sketch of the proof. Let I' = (), FIS((%:)%,,). (The closures are taken in the
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which, in particular, implies F'S((x;)$2,) € p. O

The above definitions and theorems readily extend to general semigroups.
Given a semigroup (G, -), one defines G as the set of ultrafilters on G. The
semigroup operation naturally extends to SG by the rule

Acp-qe{r:Ar ' ep)leq
(where Az~ :={y € G :yz € A}).

FEzercise 2. Verify that (8G,-) is a left-topological compact semigroup.

The IP sets, which, in the case of multiplicative notation, become fi-
nite product sets, are defined as follows. Given any sequence (z,)peny C G
and F' € F denote by [],.r2n the product of z,,n € F in the decreas-
ing order of indices. Then the IP set generated by (z,)nen is defined as
FP((zn)21) = {I],cr Tn, F € F}. As in the case of (8N, +), the IP sets in
general semigroups are closely related to idempotent ultrafilters (whose exis-
tence follows from Ellis’ theorem, alluded to above). In particular, one can
check that the proof of Hindman’s theorem given above transfers verbatim to
give a proof of the following theorem and its corollary. Note that the Corol-
lary 1.7 below can also be obtained from the finite unions theorem (Theorem
1.3 above).

Theorem 1.6. Let (G, -) be a discrete semigroup and let p be an idempotent
in (BG,-). Then for any A € p there exists a sequence (xp)nen in BS such
that FP((z,)%,) C A.

Corollary 1.7. For any finite partition G = |J;_, C; one of the C; contains
an IP set.

Exercise 3. Give a detailed proof of Theorem 1.6 and Corollary 1.7.

Since N (and, hence, SN) has two natural structures, namely, those of
addition and multiplication, it follows that for any finite partition N = | J;_, C;
there are 7,7 € {1,2,...,r} such that C; contains an additive IP set and C;
contains a multiplicative IP set. The following theorem due to Hindman
shows that one can always have ¢ = j.

Theorem 1.8. ([Hi2]) For any finite partition N = |J._, C; there egists
i€{1,2,..,r} and sequences (x,)%, and (y,)s, in N such that F/S((x,),)U
FP((yn)521) € Ci

Proof. Let I' be the closure in SN of the set of additive idempotents. We
claim that p € I' if and only if every p-large set A contains an additive IP
set. Indeed, if A € p € T', then A is a (clopen) neighborhood of p. It follows
that there exists ¢ € A with ¢ + ¢ = ¢. Then A € ¢ and by Theorem 1.2
A contains an IP set. Conversely, if A is a basic neighborhood of p and for
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some (2,)%, FS((z,)2 ) C A, then by Theorem 1.5 above there exists an
idempotent ¢ with F.S((x,)22,) € ¢, which implies A € ¢, and hence p € T.
We will show now that I" is a right ideal in (AN,-). Let p € T', ¢ € BN,
and let A € p-q. Then {z € N: Az! € p} € ¢ and, in particular,
{z € N: Azx~! € p} is non-empty. Let z be such that Az~! € p. Sincep € T,
there exists a sequence (y,)%%; with FS((y,)%,) € Az~!', which implies
FS((zyn)2,) C Aand sop-q € I'. We see that I' is a compact subsemigroup
in (PN, -) and hence contains a multiplicative idempotent. To finish the proof,
let UI_,C; = N and let p € T satisfy p-p = p. Let 7 € {1,2,...,7} be such
that C; € p. Then, since p € I, C; contains an additive IP set. Also, since p
is a multiplicative idempotent, C; contains (by Theorem 1.6) a multiplicative
IP set. We are done. U

Remarks (i) For an elementary proof of Theorem 1.8 see [BH2].

(ii) Theorem 2.12 below shows that for any finite partition | J;_, C; = N
one C; has interesting additional properties. In particular, one C; can be
shown to contain in addition to an additive and a multiplicative IP sets, also
arbitrarily long arithmetic and arbitrarily long geometric progressions.

2. MINIMAL IDEMPOTENTS, CENTRAL SETS, AND COMBINATORIAL
APPLICATIONS

Let 0 : N — N denote the shift operation: o(z) =z + 1, x € N. As we
saw above, all that it takes to prove Hindman’s theorem is to apply a version
of Poincaré recurrence theorem to the “measure preserving system” (N, p, o),
where p is an arbitrary idempotent in (SN, +). Indeed, the idempotence of p
implies that any p-large set A has the property that for p-many n € N the set
A —n=0""(A) is also p-large and hence for some n (which in our situation
can be chosen from A) one has (AN o~"(A)) € p. The rest of the proof is
just a routine iteration.

We shall introduce now an important subclass of idempotents which will
allow us to make a connection with another basic dynamical notion, namely,
that of a minimal dynamical system.

A topological dynamical system (with “time” N) is a pair (X, T), where X
is a compact space and T : X — X is a continuous map. The system (X,T)
is called minimal, if for any = € X one has (T"z),eny = X. One can show,
by a simple application of Zorn’s lemma, that any system (X,7’) contains a
minimal compact non-empty 7T-invariant subset Y which, consequently, gives
rise to minimal system (Y,7) (by slight abuse of notation we denote the
restriction of 7" to Y by the same symbol). Extending the shift operation o
from N to SN by the rule ¢ — ¢+ 1 (where 1 denotes the principal ultrafilter
of sets containing the integer 1), we obtain a topological dynamical system
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(BN, o). The following theorem establishes the connection between minimal
subsystems of (AN, o) and minimal right ideals in (AN, +).

Theorem 2.1. The minimal closed invariant subsets of the dynamical system
(BN, o) are precisely the minimal right ideals of (BN, +).

Proof. We first observe that closed o-invariant sets in SN coincide with right
ideals. Indeed if I is a right ideal, i.e. satisfies I + SN C I, then for any p € I
one has p+1 € I+N C I, so that I is o-invariant. On the other hand, if §'is a
closed o-invariant set in SN and p € S, then p+SN=p+N=p+NC S =5,
which implies S + SN C S.

Now the theorem follows from a simple general fact that any minimal right
ideal in a compact left-topological semigroup (G, -) is closed. Indeed, if R is
a right ideal in (G, -) and z € R, then zG is compact as the continuous image
of G and is an ideal. Hence the minimal ideal containing z is compact as
well. (The fact that R contains a minimal ideal follows by an application of
Zorn’s lemma to the non-empty family {7 : I is a closed right ideal of G and
I CR}). O

Our next step is to observe that any minimal right ideal in (5N, +), being
a compact left-topological semigroup, contains, by Ellis’ theorem, an idem-
potent.

Definition 2.2. An idempotent p in (6N, +) is called minimal if p belongs
to a minimal ideal.

Theorem 2.3. Any minimal subsystem of (BN, o) is of the form (p+ SN, 0)
where p is a minimal idempotent in (ON,+).

Proof. 1t is obvious that, for any p € (AN, +), p+ BN is a right ideal. To
see that any minimal right ideal is of this form, take any ¢ € R and observe
that ¢ + SN C R+ N C R. Since R is minimal, we get ¢ + SN = R. In
particular, one can take ¢ to be an idempotent.

Before moving to some immediate corollaries of Theorem 2.3 we want to
remind the reader that a set A C N is called syndetic if it has bounded gaps,
or equivalently, if for some finite F* C N one has [ J,.z(A —t) = N. A set
A C Nis called piecewise syndetic if it can be represented as an intersection of
a syndetic set with an infinite union of intervals [ay, b,|, where b, — a,, — 0.

An equivalent definition of piecewise syndeticity (and the one which makes
sense in any semigroup) is given in the following exercise.

Ezxercise 4. Prove that a set A C N is piecewise syndetic if and only if there
exists a finite set F' C N, such that the family {{J,cz(A —t) —n: n € N}
has the finite intersection property.
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FEzercise 5. (i) Prove that if (X,7T) is a minimal system then every point
z € X has a dense orbit.

(ii) Prove that if (X, T) is a minimal system then for any x € X and any
neighborhood V' of = the set {n: T"z € V'} is syndetic.

Theorem 2.4. Let p be a minimal idempotent in (BN, +).
(i) For any A € p the set B={n: (A —n) € p} is syndetic.
(i) Any A € p is piecewise syndetic.
(iii) For any A € p the set A— A= {n; —ng : ny,ny € A} is syndetic.

Proof. Statement (i) follows immediately from the fact that (p + SN, 0) is a
minimal system. Indeed, note that the assumption A € p just means that
p € A, ie. Ais a (clopen) neighborhood of p. Now, by Exercise 5, in a
minimal dynamical system every point x is uniformly recurrent, i.e. visits
any of its neighborhoods V' along a syndetic set. This implies that the set
{n: p+tneAf={n: Aep+n}={n: A—n € p} is syndetic.

(ii) Since the set B = {n : A—n € p} is syndetic, the union of finitely many
shifts of B covers N, i.e. for some finite set /' C N one has | J,.p(B—t) =N.
So, for any n € N there exists ¢t € I such that n € B—t, orn+1t € B.
By the definition of B this implies (A — (n +t)) € p. It follows that for
any n the set | J,cz(A —t) — n belongs to p, and consequently, the family
{Uier(A —1t) —n: n € N} has the finite intersection property. By Exercise
4 this is equivalent to piecewise syndeticity of A.

(iii) Observe that n € A — A if and only if AN (A —n) # (). But then it
follows from (i) that the set {n : AN(A—n) € p} is syndetic. We are done. [J

FEzercise 6. Let (I',-) be a compact left-topological semigroup and let p € I'.
Verify that p - [" is a compact right ideal and that any minimal right ideal is
representable in this form.

For minimal idempotents in (8G,-) (i.e. idempotents belonging to mini-
mal right ideals) one has an analogue of Theorem 2.4. In order to properly
formulate it, one has first to define in a general context the notions of synde-
ticity and piecewise syndeticity since in a non-commutative situation one has
left and right versions and needs to make “right” choices (pun not intended!).

Since we work with the left-topological semigroup (8G, -) the correct no-
tions, which allow one to painlessly transfer the theorems above to the general
set-up, turn out to be the left ones. Recall that given a set A and an element
r in a semigroup (G, -) one has, by definition, Az ' = {y € G : yx € A}.

Definition 2.5. Let G be a semigroup. A set A C G is called syndetic if for
some finite set F C G one has J,cp At™' = G. A set A C G is piecewise
syndetic if for some finite set F C G the family {(U;cp At ™" )a™' 1 a € G}
has the finite intersection property.
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The following exercise establishes a general form of Theorem 2.4.

FEzercise 7. Let G be a discrete semigroup and p € (SG,-) a minimal idem-
potent. Prove:

(i) For any A € p the set B={g: Ag~! € p} is syndetic.

(ii) Any A € p is piecewise syndetic.

(iii) For any A € p, the set A™'A = {z € G : yx € A for some y € A} is
syndetic. (Note that if G is a group, then A A = {g7 g2 : g1, 92 € A}

The notion of minimality for idempotents can also be expressed in terms
of a natural partial order which we will presently introduce.

Definition 2.6. Let p,q be idempotents in a semigroup (G,-). We shall say
that p is dominated by q and write p < q if pqg = qp = p.

Exercise 8. Check that < is transitive, reflexive and antisymmetric relation
on the set of idempotents in G.

Theorem 2.7. Let (G,-) be a compact left topological semigroup. Then an
tdempotent p is minimal with respect to the order < if and only if it belongs
to a minimal right ideal.

Proof. (i) Assume that p < ¢ is minimal with respect to the order <. By
Exercise 6, pGG is a right ideal which contains a closed minimal right ideal R.
Let go € R be an idempotent. Since gy € pG, qo = pg for some g € G. We
have pgy = ppg = pg = qo. Therefore gopgop = qoqop = qop and gop is also
an idempotent. It satisfies pgop = qopp = qop, and hence gop < p. But p was
assumed to be minimal with respect to the order <, and so gyp = p. This
gives pG = qopG C qoG and shows that pG is itself a minimal right ideal.
(ii) Assume that p is an idempotent in a minimal right ideal R. Note that
pG is a right ideal and since pG C R we have pG = R. Assume now that
for some idempotent ¢ one has ¢ < p and show that p < ¢. Since ¢ < p
then we have also ¢G C R. It follows that for some g € GG, p = q¢g. Hence
gp = qqg = qg = p. But gp = ¢ (because ¢ < p). So p < g and we are done. [J

Remark. Tt follows from the proof of part (i) above that for any idempotent
q, there exists a minimal idempotent p with p < gq.

Before moving to some applications of minimal idempotents in Ramsey
theory, we want to introduce one more useful algebraic-topological notion.

Definition 2.8. Let (G,-) be a compact left-topological semigroup. Then
K(G)={R: R is a minimal right ideal }.

Note that in view Exercise 6, K(G) # 0.
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Theorem 2.9. Let (G, -) be a compact left topological semigroup. Then K(Q)
15 a two-sided ideal, and, in fact, the smallest two-sided ideal.

Proof. Being the union of right ideals, K(G) is trivially a right ideal. We
note also that if I is a two-sided ideal of G then K (G) C I. Indeed, for any
minimal right ideal R of G one has RN I # () (since for any z € R and
y € I one has zy € RN I) and hence RN I is a right ideal which, in view of
minimality of R implies RN I = R. Hence, K(G) C I.

It remains to show that K(G) is a left ideal of G, i.e. G- K(G) C K(G).
Let z € K(G) and let R be a minimal right ideal of G such that z € R. For
arbitrary y € GG one has: yx € yR and, since yR is a right ideal, it remains to
show that it is a minimal right ideal. Indeed, then one has yz € yR C K(G)
which clearly implies G - K(G) C K(G).

So let J be a right ideal of G satisfying J C yR and let C = {z € R :
yz € J}. Then C is a right ideal of G which is contained in R and so C = R
and J = yR. O

We are going to present now a proof, via the minimal idempotents, of
the celebrated van der Waerden theorem on arithmetic progressions, which
states that for any finite partition N = |J;_, C;, one C; contains arbitrarily
long arithmetic progressions. (This proof is a slight modification of the proof
from [BFHK], which, in its turn, was a modification of an argument due to
Furstenberg and Katznelson that first appeared, in the framework of an Ellis
enveloping semigroup, in [FK2]).

Since for any minimal idempotent p € (SN,+) and any partition N =
Ui_, Ci, one C; belongs to p, van der Warden’s theorem clearly follows from
the following result.

Theorem 2.10. Let p € (BN, +) be a minimal idempotent and let A € p.
Then A contains arbitrarily long arithmetic progressions.

Proof. Fix k € N and let G = (BN)*. Clearly, G is a compact left topological
semigroup with respect to the product topology and coordinatewise addition.
Let

Ey={(a,a+d,..,a+(k—1)d): a€N, d e NU{0}},
Iy={(a,a+d,...,a+ (k—1)d): a,d € N}.

Clearly, E, is a semigroup in N¥ and I, is an ideal of E,. Let E = clgF, and
I = clgl be, respectively, the closures of Ey and I in G. It follows by an easy
argument, which we leave to the reader, that F is a compact subsemigroup
of G and I is a two-sided ideal of E. Let now p € K(8N,+) be a minimal
idempotent and let p = (p,p,...,p) € G. We claim that p € I and that this
implies that each member of p contains a length k arithmetic progression.
Indeed, assume that p € I and let A € p. Then A x ... x A = (A)* is a
neighborhood of 5. Hence p € (A)* N clgly = clg(A* N Iy), which implies
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AF N Iy # (. 1t follows that for some a,d € N (a,a+d, ...,a + (k — 1)d) € AF
which finally implies {a,a + d,...,a + (k — 1)d} C A.

So it remains to show that p € I. We check first that p € E. Let
Ay Ay .. Ay € p. Then A; x Ay x ... x Ay 2 p. Ifa € ﬂleAi then
(a,a,...;a) € (A; x Ay x ... x A;) N Ey which implies p € E.

Now, since p € K((BN,+)), there is a minimal right ideal R of (AN, +)
such that p € R. Since p € E, p+ FE is a right ideal of E and there is a
minimal right ideal R of E such that R C p+ E. Let ¢ = (q1, o, ---, gx) be an
idempotent in R. Then § € p+ E and for some § = (sy, Sa, ..., 5) in E we get
G = p+ 5. We shall show now that p = ¢+ p. Indeed, from ¢ = p + § we get,
foreachi =1,2,....k, ¢; = p+s;. This implies ¢; € R and since R is minimal,
¢;+ N = R. Hence p € ¢;+ ON. Let , foreach:=1,2,....k, t; € SN be such
that p=¢; +t;. Then ¢; +p=¢q; + ¢, +t; = q; +t; = p and so we obtained
p=4q+p. 3

To finish the proof, we observe that p = ¢+ p implies p € §+ EF = R
which, in its turn, implies p € K(FE) C I (since K(F) is the smallest ideal in
E). We are done. O

FEzercise 9. Show that there is an idempotent p in (ON, +) with the property
that not every member of p contains a 3-term arithmetic progression.
Hint. Consider F'S(10™)22, and utilize Theorem 1.5.

n=1

Definition 2.11. Let (G,-) be a discrete semigroup. A set A C G is called
central if there exists a minimal idempotent p € (BG,-) such that A € p.

FEzercise 10. Prove that any multiplicatively central set in N (namely, a mem-
ber of a minimal idempotent in (AN, -)) contains arbitrarily long geometric
progressions.

FEzercise 11. (i) Let S be a central set in (N, +) and let d € N. Let S/d =
{n: nd € S} and dS = {n: n/d € S}. Prove that S/d and dS are central
in (N, +).

(ii) Use (i) (for n = 2) to show that each of the following sets is additively
central:

C,={3*Bm+1): k,m e NU{0}},

Cy={3*(3m +2): k,m e NU{0}}.

As theorems above indicate, central sets are an ideal object for Ramsey-
theoretical applications. For example, central sets in (N, +) not only are large
(i.e. piecewise syndetic) but also are combinatorially rich and, in particu-
lar, contain IP sets and arbitrarily long arithmetic progressions. Similarly,
the multiplicative central sets in (N,-) (namely, the members of minimal
idempotents in (AN, -)) are multiplicatively piecewise syndetic, contain finite
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products sets (i.e. the multiplicative IP sets), arbitrarily long geometric pro-
gressions etc.

The following theorem obtained in collaboration with N.Hindman may be
viewed as enhancement of Theorem 1.8 above.

Theorem 2.12. ([BH1|, p.312) For any finite partition N = |J._, C; one of
C; 1s both additively and multiplicatively central.

Sketch of the proof. Let M = cl{p: p is a minimal idempotent in (SN, +)}.
Then one can show that M is a right ideal in (AN,-) (see [BH1|, Theorem
5.4, p.311). Let R C M be a minimal right ideal and pick an idempotent
g=gq-qin R. Let i € {1,2,...,r} be such that C; € q. Since ¢ is a minimal
idempotent in (BN, -), C;is central in (N, -). Since C; € ¢ and ¢ € M, there is
some minimal idempotent p in (8N, +) with C; € p. Hence C; is also central
in (N, +). O

The following theorem supplies a useful family of examples of additively
and multiplicatively central sets in N.

Theorem 2.13. (cf. [BH3], Lemma 3.3) For any sequence ()%, and an in-
creasing sequence (b,)22, in N, U " {an, an+1,an+2, ..., a,+b,} is additively
central and \J;o {an - 1,a, - 2, ..., an - by} is multiplicatively central.

As we shall see in the subsequent sections, central sets play also an im-
portant role in the study of recurrence in topological dynamics and ergodic
theory. The original definition of central sets in (N, +), due to H. Fursten-
berg, was made in the language of topological dynamics. Before introducing
Furstenberg’s definition of centrality, we want first to recall some relevant
dynamical notions.

Given a compact metric space (X, d), a continuous map 7' : X — X and
not necessarily distinct points x1, s € X, one says that x1,zo are proximal,
if for some sequence ny — 0o one has d(T™z,, T™x9) — 0.

A point which is proximal only to itself is called distal. In case all the
points of X are distal T is called a distal transformation and (X, T) is called
a distal system.

FEzercise 12. (i) Show that any isometry is a distal transformation.

(ii) Let o be an irrational number. Show that the skew product map de-
fined on 2-torus T? by T'(z,y) = (x + a,y + x) is distal but cannot be made
an isometry in any equivalent metric on T2.

Remark. The skew product map featured in the Exercise 12 (ii) is an
example of an isometric extension. A deep structure theorem of distal systems
proved by Furstenberg in [F2] states that, for a sufficiently broadly interpreted
notion of an isometric extension, any minimal distal system is a (potentially
transfinite) tower of successive isometric extensions. We shall see in the next
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section that the notion of distality is intrinsically linked with the idempotent
ultrafilters.

Recall that a point z in a dynamical system (X,T) is called uniformly
recurrent if for any neighborhood V' of z the set {n: T"z € V} is syndetic.

Exercise 13. Prove that if (X, T') is minimal (i.e. every point has dense orbit)
then each point z € X is uniformly recurrent.

One can show (see for example [A1], [E2], [F4, p.160]) that in a dynamical
system on a compact metric space every point is proximal to a uniformly
recurrent point. In particular, this implies that any distal point is uniformly
recurrent. (See Theorem 3.9 below for a proof of an enhanced version of this
fact.)

We are now ready to formulate Furstenberg’s original definition of central
sets in (N, +). For the proof of the equivalence of this definition to Definition
2.11 above, see Theorem 3.6

Definition 2.14. (see [F4], p.161) A subset S C N is a central set if there
exists a system (X, T), a point x € X, a uniformly recurrent point y proximal
to x, and a neighborhood Uy, of y such that S = {n : T"z € U,}.

We shall conclude this section by introducing and discussing various no-
tions of largeness for subsets of N, which will be utilized in the subsequent
sections.

Following the terminology introduced in [F4], given a family M of non-
empty sets in N, let us call a set £ C N an M* set if for any M € M one
has EN M # 0.

For example, if M consists of sets containing arbitrarily long blocks of
consecutive integers (these sets are called replete in [GH] and thick in [F4]),
the family M* consists of syndetic sets. If M is the collection of all IP
sets in (N, +), then the elements of M* will be called IP* sets. Similarly,
central® sets, or, simply C* sets are defined as the sets which have nontrivial
intersection with any central set.

Theorem 2.15. (i) A set E C N is an IP* set if and only if E is a member
of any idempotent p € (BN, +).

(ii) A set E is C* set if and only if it is a member of any minimal idem-
potent p € (BN, +).

Proof. (i) Let p be an idempotent in (AN, +). If E ¢ p, then E¢ € p and,
by Hindman’s theorem (Theorem 1.2 above), there exists an IP set in E°
which fails to have a non-trivial intersection with F, which contradicts the
assumption that F is an IP* set.

(ii) The proof is similar to that of (i). Assume that F is C* set. If p is
minimal idempotent and E ¢ p, then E° € p and hence E° is a central set
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which has an empty intersection with E. This contradicts the assumption
that E is C*. d

Corollary 2.16. C* sets and IP* sets have finite intersection property.

Remark. One can easily check that the definitions of IP* and C* sets, as well
as Theorem 2.15 and Corollary 2.16, extend naturally to general semigroups.
We record here the following trivial extension of Theorem 2.15 (ii), that will
be used in the course of the proof of Theorem 4.4 below:

A set E in a countable semigroup G is C* if and only if it is a member of
every minimal idempotent p € BG.

It immediately follows from Theorem 2.15 that every IP* set is C*. On
the other hand, since, by Theorem 2.10, every central set contains arbitrarily
long arithmetic progressions, the complement of F'S(10")%, is, in view of
Exercise 9, a C* set which is not IP*. We shall indicate now still another

possibility of making the distinction between C* and IP* sets.

Definition 2.17. For a set E C N the upper Banach density, d*(F), is
defined by the formula

: [EN[M,N]
d*(F) = limsup —————
(E) N—M—)opo N-M+1
Proposition 2.18. If E C N is a C* set and P C N satisfies d*(P) = 0,
then E\ P is a C* set.

Proof. Tt is obvious that a set having zero upper Banach density cannot be
piecewise syndetic. It follows from Theorem 2.4, (ii) that d*(P) = 0 implies
that N\ P is a member of any minimal idempotent and hence is a C* set.
The claim of the lemma follows now from Corollary 2.16. O

Remark. Proposition 2.18 implies that if £ is a C* set and P is an IP set
satisfying d*(P) = 0, then E \ P is a C* set which is not IP*.

FEzercise 14. (i) Show that 2N + 1 is a syndetic set which is not C*.
(ii) Show that every C* set is syndetic.

It follows from the above exercise that, unlike the syndetic sets, IP* and
C* sets are not stable under a shift: 2N is a C* set but 2N + 1 is not. This
motivates the following definition.

Definition 2.19. A set E is called C7 if for some k € Z, E —k is a C* set.
Similarly, if for some k € Z, E — k is IP* set then E is called 1P} set.

It is an immediate observation that a set E is 1P} (C%) if and only if for
some k € Z, E — k is a member of any idempotent (any minimal idempotent)
in (BN, +). It follows that any I P} set is C7 and that any C7 set is syndetic.
The following result shows that these inclusions are strict.
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Theorem 2.20. (i) Not every syndetic set is C%; (ii) not every C% set is
1P,
+

Proof. (i) Let us call any set of the form S = ;2 [ai, b;], where b; — a; — oo,
a T-set (T stands for Thick). By Theorem 2.13 and Exercise 11(i), any T-set
S is central as well as is the set 2S5. Note now that one can easily construct
T-sets S;, © > 0, so that the sets 25y, 251 — 1, 255 + 1, 253 — 2, 25, + 2, ...,
255,-1 — n, 289, + n, ... are all disjoint. Let U be the union of these sets.
Then V = N\ U is certainly syndetic. At the same time, for any k € Z, V
misses a k-shift of a central set and hence is not C7.

(ii) The proof is similar to that of (i). It is not hard to construct “thin”
IP sets (S,)3, such that Sy, S1—1,514+1,52—2,5+2,...,5,—n,Sp,+n, ...
are all disjoint and their union U has zero upper Banach density. Then, by
Proposition 2.18, V' = N\ U is C* but not IP*, since for every k& € Z, V misses
a k-shift of an IP set. O

3. CONVERGENCE ALONG ULTRAFILTERS, TOPOLOGICAL DYNAMICS, AND
SOME DIOPHANTINE APPLICATIONS

In this section we shall introduce and exploit the notion of convergence
along ultrafilters. As we shall see, this notion, especially the convergence
along minimal idempotents, allows one to better understand distality, prox-
imality and reccurence in topological dynamical systems. We want to point
out that many proofs to be given below are similar to known proofs which
utilize the so called Ellis enveloping semigroup (see [E3], [A2]). This is not
too surprising since the Ellis semigroup is a particular type of compactifica-
tion and is in many respects similar to the universal object, the Stone-Cech
compactification. On the other hand, the usage of ultrafilters, especially the
idempotent ones, has at least two advantages. First, one can, on many oc-
casions, replace in the proofs the convergence along idempotent ultrafilters
by the notion of IP convergence which is based on Hindman’s theorem, and
hereby eliminate the usage of nonmetrisable objects in metrisable dynamics
(there are people who care about such things...). See [B2, p.34] for more dis-
cussion. Second, the usage of ultrafilters allows one to much more easily deal
with combinatorial applications of topological dynamics. For example, we
shall show in this section that the two different notions of central discussed
in Section 2 are equivalent.

To keep the presentation more accessible and in order to be able to better
emphasize the main ideas we shall be dealing in this section mostly with the
topological systems of the form (X, T") where X is a compact metric space and
T is a (not necessarily invertible) continuous selfmap of X. All the definitions
and results below are more or less routinely transferable to actions of general
(countably) infinite semigroups of continuous mappings of compact metric
spaces. Also, many results in this section can be extended to the case where
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X is not metrisable compact Hausdorff space. We leave all these extensions
as an exercise to the reader.
Throughout this and the subsequent sections SN stands for (8N, +).
Given an ultrafilter p € SN one writes p-lim,cn 2, = y if for every neigh-
bourhood U of y one has {n: z, € U} € p.

FEzercise 15. (i) Check that p-lim,cy z,, exists and is unique in any compact
Hausdorff space.

(ii) Fix a sequence (x,)nen in a compact Hausdorff space X. Prove that
the map F : BN — X, defined by F(p) = p-lim,en 2, is continuous.

(iii) Prove that if 21, zo are proximal points in a topological system (X, 7)),
then there exists p € SN such that p-lim,cnyT"z; = p-lim, ey T"25.

Theorem 3.1. Let X be a compact Hausdorff space and let p,q € BN. Then
for any sequence (z)nen in X one has
1 -1i = p-limg-1li )
(3.1) (g9+p)-lime, = p-limg-limz,,,
In particular, if p is an idempotent, and ¢ = p, one has
-1i = p-limp-1i )
Pl =plgp e
Proof. Note that by Exercise 15 both sides of equation (3.1) are well defined.
Let x = (¢ + p)-lim,enx,. Given a neighborhood U of = we have {r : z, €
U} € g+ p. Recalling that a set A C N is a member of ultrafilter ¢ + p if and
only if {n € N: (A —n) € ¢} € p, we get

{t:{s:zs€U}t—t)eqt={t:{s:x,50. €U} eqtep
This means that, for p-many ¢, ¢-limsenxsy; € U and we are done. Ol

FEzercise 16. Let R be a minimal right ideal in SN. Recall that (R,0),
where ¢ : p— p+ 1, is a minimal (non-metrizable) system (see Theorem 2.3
above). Given a topological system (X,T) and a point x € X consider the
mapping ¢ : R — X, defined by ¢(p) = p-lim,en7"z. Denote by Y the set
{p-lim,eny T"z : p € R}. Prove that (Y,T) is a minimal system by checking
that the following diagram is commutative:

R 2R

o e

y L, v

Proposition 3.2. Let (X,T) be a topological system and let z € X be an
arbitrary point. Given an idempotent ultrafilter p € BN, let p-lim,enT"x = y.
Then p-limpen T™y = y. If x is a distal point (i.e. x is prozimal only to itself)
then p-lim,enT"x = x.
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Proof. Applying Theorem 3.1 (and the fact that p + p = p), we have
p—LlEIII\l]T Yy = p-lnlenk\}T p—iigll\IT T

= p-lim p- im Tz = p-limT"z = y.

neN meN neN
If z is a distal point, then the relations p-lim,cnT"x = y = p-lim,enT™y
clearly imply x = y and we are done. O

Ezxercise 17. Show that if T is a continuous distal selfmap of a compact
metric space then 7 is invertible and 7T~! is also distal. Hint. It follows from
Proposition 3.2 that 7' is onto.

Proposition 3.3. If (X, T) is a minimal system then for any x € X and any
minimal right ideal R in SN there exists a minimal idempotent p € R such
that p-limT"x = x.

Proof. By Exercise 16, X = {p-lim,enT"z, p € R}. It follows that the set
I'={p € R:plim,cgT"z = z} is non-empty and closed. We claim that I'
is a semigroup. Indeed, if p,q € I, one has :

(p+ Q)—}lléII\IIT T = q-nglNT p-rléé%{T T =1
By Ellis theorem I' contains an idempotent which has to be minimal since it
belongs to R. We are done. O

FEzircise 18. Let (X, T) be a topological system, R a minimal right ideal in
BN, and let x € X be a point in X. Prove that the following are equivalent:
(i) z is uniformly reccurent;
(ii) there exists a minimal idempotent p € R such that p-lim,eny T"z = z.

It follows from Proposition 3.2 that for any topological system (X, T), any
x € X, and any idempotent ultrafilter p, the points x and y = p-lim,en T"2x
are proximal. (If (X, 7) is a distal system then y = z). The following theorem
gives a partial converse of Proposition 3.3.

Theorem 3.4. If (X,T) is a topological system and 1, xs are prorimal, not
necessarily distinct points and if o is uniformly reccurent, then there erists
a minimal tdempotent p € BN such that p-lim,cnyT"21 = 5.

Proof. Let I = {p € BN : p-limpenT"x1 = p-limyenT"22}. By Exercise
15 (iii), I is a non-empty closed subset of SN. One immediately checks that
I is a right ideal. Let R be a minimal right ideal in I. Since z, is uni-
formly recurrent, its orbital closure is a minimal system. By Proposition 3.3
there exists a minimal idempotent p € R such that p-lim7"zy = x5. Then
p-lim,eny Tz = p-lim,eny T" 29 = x9 and we are done. O

One can give a similar proof to the following classical result due to J. Aus-
lander [A1] and Ellis [E2].
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Theorem 3.5. Let (X, T) be a topological system. For any x € X there exists
a uniformly recurrent point y in the orbital closure {T"x}, .\, such that x is
proximal to y. Moreover, for any minimal right ideal R C SN there exists a
minimal idempotent p € R such that p-lim,enT"x = y.

Proof. Let R be a minimal ideal in SN and let p be a (minimal) idempotent
in R. Let y = p-lim,cnyT"x. Clearly, y belongs to the orbital closure of x.
By Proposition 3.2, x and y are proximal. By Exercise 18, y is uniformly
recurrent. We are done. O

We are in position now to establish the equivalence of two notions of central
that were discussed in Section 2.

Theorem 3.6. The following properties of a set A C N are equivalent:

(i) (cf. [F4], Definition 8.3) There exists a topological system (X, T), and
a pair of (not necesserily distinct) points x,y € X where y is uniformly
recurrent and prorimal to x, such that for some neighborhood U of y one
has:

A={neN:T'z € U}

(ii) ([BH1], Definition 3.1) There exists a minimal idempotent p € BN such
that A € p.

Proof. (i) = (ii) By Theorem 3.5 there exists a minimal idempotent p, such
that p-lim,cy7™2 = y. This implies that for any neighborhood U of y the
set {n € N: T"z € U} belongs to p.

(ii)) = (i) The idea of the following proof is due to B. Weiss. Let A be
a member of a minimal idempotent p € SN. Let X = {0,1}, the space of
bilateral 0-1 sequences. Endow X with the standard metric:

d(wr,wy) = min{ cwi (1) = wa(7) for |i| < n}

n+1
It is easy to check that (X, d) is a compact metric space. Let T': X — X be
the shift operator: T'(w)(n) = w(n+ 1). Then T is a homeomorphism of X
and (X, T) is a topological dynamical system. Viewing A as a subset of Z, let
x =14 € X. Finally, let y = p-lim,cy T"x. By Proposition 3.2, x and y are
proximal. Also, since p is minimal, y is, by Exercise 18, a uniformly recurrent
point. We claim that y(0) = 1. Indeed, define U = {z € X : 2(0) = y(0)},
and note that, since y = p-lim,cy 7"z and A € p, one can find n € A such
that 7"z € U. But since x = 14, (T™z)(0) = 1. But then, given n € Z,
we have: T"z € U & (T"z)(0) =1 < z(n) =1 < n € A. It follows that
A={n€Z:T"x € U} and we are done. O

Remark. One can show that the characterization of central sets given in The-
orem 3.6 extends to general semigroups. See [BH1| and [SY].
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Let (X,T) be a topological system. In [F4], a point z € X is called IP*
recurrent (C* recurrent) if for any neighborhood U of z, {n € N: T"z € U}
is an IP* set (C* set). The following straightforward exercise establishes the
connection between these notions of recurrence and convergence along idem-
potent ultrafilters.

FEzercise 19. Let (X,T) be a topological system and let z € X. Prove:

(i) x is IP* recurrent if and only if for any idempotent p € OGN one has
p-lim,en Tz = x;

(ii) = is C* recurrent if and only if for any minimal idempotent p € SN
one has p-lim,enyT"x = x.

We saw in Section 2 that the family of C* sets is wider them that of IP*
sets (see the discussion after Corollary 2.16 and Remark after Proposition
2.18). It turns out, however, that, somewhat surprisingly, the notions of IP*
recurrence and C* recurrence coincide.

Theorem 3.7. (cf. [F4], Proposition 9.17) Let (X, T) be a dynamical system.
A point x € X is IP* recurrent if and only if it is C* recurrent.

Proof. We need to show only that C* recurrence implies IP* recurrence. Let
q € BN be an arbitrary idempotent and let us show that ¢-lim,nyT"x = .
By the remark after Theorem 2.7, there exists a minimal idempotent p,
such that p < ¢q. Then p+ ¢ = p and we have: z = p-lim,enT"x =
(p + q)-limpenT"x = g-limyeny T (p-limyen T™2) = ¢-limyen T"2. We are
done. [l

We recall that a point is called distal if it is proximal only to itself.

Theorem 3.8. Let (X, T) be a dynamical system and x € X. The following
are equivalent:

(i) = is a distal point;

(ii) x is IP* recurrent.

Proof. (i) = (ii). By Proposition 3.2, for any idempotent p, z and p- lim, ey 7"z
are proximal. Since z is distal, this may happen only if z = p-lim7"z. By
Exercise 19 (i), this means that x is an IP* recurrent point.

(ii) = (i). If = is not distal, then there exists y # z, such that z and y
are proximal. But then, by Theorem 3.4, there exists an idemponent p such
that p-lim 7"z = y. Since y # z, this contradicts (ii). (We are using again
the characterization of IP* recurrence given in Exercise 19). O

Remark. The property of a point z to be IP* recurrent is much stronger
than that of uniform recurrence (which, by Exercise 18, is equivalent to the
fact that for some minimal idempotent p-lim,cy 7"x = ). While, in a min-
imal system, every point is uniformly recurrent, there are minimal systems
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having no distal points. In particular, any minimal topologically weakly mix-
ing system is such. (See [F4, Theorem 9.12]).

We shall conclude this section with some diophantine applications which
may be viewed as enhancements of classical results due to Hardy-Littlewood
and Weyl. But first we need the following variation on the theme of Theorem
3.8.

Theorem 3.9. Assume that (X,T) is a minimal system. Then it is distal if
and only if for any x € X and any open set U C X the set {n:T"x € U} is
1P .
Proof. Assume that (X, T) is distal. By minimality, there exists ny € N such
that 7™z € U. By Theorem 3.8, the set {n : T"(T™z) € U} is IP* which, of
course, implies that the set {n : T"z € U} is IP*.

Assume now that for any z;,zs and a neighborhood U of z, the set
{n :T"zy € U} is IP%.. We will find it convenient to call an IP* set A C N
proper if A is not IP* (i.e. A is a nontrivial shift of an IP* set and, moreover,
this shifted IP* set is not IP*). If T" were not distal, then for some dis-
tinct points x1, z9 and idempotents p, ¢ one would have: p-lim,en T"z1 = 2o,
g-lim,en T"29 = x1 and also p-limyeny T"xy = T, ¢-limyen Tz = 21 (see
Theorem 3.4 and Proposition 3.2). Let U be a small enough neighborhood of
To. Then, since p-lim,eny T"21 = Zo, the set S = {n : T"x; € U} is a member
of p, and hence cannot be a proper IP?% set. But, since ¢-lim,enT"z; = 4,
the set S cannot be an improper IP% set (that is, an IP* set) either: if U is
small enough, S ¢ ¢. So T has to be distal. We are done. O

We record the following immediate corollary (of the proof) of Theorem
3.9.

Corollary 3.10. If (X, T) is distal and minimal, and x1,xs are distinct points
in X, then if U is a small enough neighbourhood of xo, the set {n : T"x, € U}
is a proper 1P set.

We move now to diophantine applications. Our starting point is Kro-
necker’s approximation theorem.

Theorem 3.11. (/Kro]) If the numbers 1, aq, o, ..., oy, are linearly indepen-
dent over Q, then for any k subintervals I; = (a;,b;) C [0,1] there exists
n € N such that one has simultaneously no; modl € I;, 7 =1,2,...,k.

In 1916 H. Weyl ([Weyl]) revolutionized the field of diophantine approxi-
mations by introducing the notion of uniform distribution in terms of expo-
nential sums. One of his celebrated results dealing with the values of polyno-
mials mod 1 will be discussed below. As for the Kronecker’s theorem, Weyl’s
approach gives the fact that theset ' = {n € N: no; mod1l € 1,5 =1,...,k}



28 VITALY BERGELSON

has positive density (which is equal H?Zl(bj — a;)). By considering the uni-
form Cesaro averages one can actually show that the set I' is syndetic. Since,
as we saw above, the property of a set to be IP7 is considerably stronger
than syndeticity, the following refinement of Kronecker’s theorem is of inter-
est, especially, since it does not seem to follow from considerations involving
the Cesaro averages.

Theorem 3.12. Under the assumptions and notation of Theorem 3.11 the
setI'={n€N:na; modl e}, j=1,..k} is IP;.

Proof. Let T; : T — T be defined by z +— z+0a; mod1, j =1, ..., k. Noticing
that the product transformation 77 x Ty X - - - x T}, acting on k-dimensional
torus T*, is distal (this is obvious) and minimal (this follows from Kronecker’s
theorem, but may be proved in a variety of ways), we see that our result im-
mediately follows from Theorem 3.9. O

We are going to discuss now similar refinements of some other classical
results. In what follows the crucial role will be played by minimal distal
systems. It was H. Furstenberg who introduced and applied the idea of using
the unique ergodicity of a class of affine transformations of the torus to obtain
a dynamical proof of Weyl’s theorem on equidistribution of polynomials (see
[F1] and [F4, p.69]). As we shall see, affine transformations of the kind treated
by Furstenberg can also be utilized to obtain polynomial results in the spirit
of Theorem 3.12.

The following extension of Kronecker’s theorem was obtained by Hardy
and Littlewood in [HaL)].

Theorem 3.13. If the numbers 1, aq, ..., i are linearly independent over Q,
then for any d € N and any kd intervals I;; C [0,1], | =1,...,d;j =1,..,k
the set

Ty = {n€N:nlay modl e I, I=1,...d; j=1,...k}
18 infinite.
As with Kronecker’s theorem, Weyl was able to show in [Weyl] that the
set 'y has positive density equal to the product of lengths of I;;. In 1953

P. Sziisz [Sz] proved that the set Iy is syndetic. The following theorem shows
that 'y is actually IP?.

Theorem 3.14. Under the assumptions and notation of Theorem 5.13, the
set de 18 IPj_

Proof. To make the formulas more transparent we shall put d = 3. It will be
clear that the same proof gives the general case.

We start with easily checkable claim that if T, : T*> — T® is defined by
To(z,y,2) = (z+a, y+2z+0a, 2+32+3y+a) then T7(0,0,0) = (na, n*a, na).
This transformation 7 is distal (easy) and minimal. The last assertion can
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actually be derived from the case ¥ = 1 of Hardy - Littlewood theorem
above, but also can be proved directly. (For example, this fact is a spe-
cial case of Lemma 1.25, p.36 in [F4]). Our next claim is that if the num-
bers 1, oy, as, ..., o are linearly independent over (), then the product map
T =T, x---xT,, (acting on T?) is distal and minimal as well. (The distal-
ity is obvious, the minimality follows, again, from an appropriately modified
Lemma 1.25 in [F4]). By minimality of 7', the orbit of zero in T?* is dense
which, together with Theorem 3.9, gives the desired result. O

Remark. In case the intervals [;; contain 0, it can be shown that Iy, is IP*.
This special case is also treated in [FW2].

FEzercise 20. (i) Derive from Theorem 3.14 the following fact: for any irra-
tional numbers aj, ..., and any subintervals I; C [0,1], j = 1,...,k, the
set
{n eN: njaj modl e, j=1,..,k}

is IP?.

(ii) Use (i) to obtain the following fact: for any real polynomial p(¢) having
at least one coefficient other than the constant term irrational and for any
subinterval I C [0, 1] the set {n € N: p(n)mod1 € I} is IP% .

Remark. Another possibility of proving the statement (ii) is to apply Theorem
3.9 to the transformation 7" : (z1, x2, ..., Tg) — (1 + @, To + X1, ..., Tg + Tg_1)
which is used in [F4] to derive Weyl’s theorem on uniform distribution.

We conclude this section by formulating a general result which may be
proved by refining the techniques used above.

Theorem 3.15. If real polynomials p1(t), p2(t), ..., pe(t) have the property that
for any non-zero vector (hy, hy, ..., hy) € Z* the linear combination

Zle hipi(t) is a polynomial with at least one irrational coefficient other than
the constant term then for any k subintervals I; C [0,1], j =1,..., k, the set

{neN:pj(n)modl eI, j=1,..,k}
is IP"..

4. MINIMAL IDEMPOTENTS AND WEAK MIXING

In this chapter we shall connect convergence along minimal idempotents
with the theory of weakly mixing unitary actions and weakly mixing measure
preserving systems. While the customary definitions of weakly mixing Z-
actions can be more or less routinely extended to actions of abelian or even
amenable (semi)groups (cf. [D]), the study of the weakly mixing actions of
non-amenable groups necessitates introduction of new tools and ideas.
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Before moving to a more advanced discussion, we want to illustrate the
multifariousness of the notion of weak mixing by listing some equivalent con-
ditions for a system to be weakly mixing. (In most books either (i) or (ii)
below is taken as “official” definition of weak mixing).

Theorem 4.1. Let T be an invertible measure-preserving transformation of
a probability measure space (X, B, u). Let Urp denote the operator defined on
measurable functions by (Urf)(z) = f(Tx). The following conditions are
equivalent:

(i) For any A,B € B

N-—1
]ggrg)o—nzolu (ANT™"B) — p(A)u(B)| = 0;

(ii) For any A, B € B there is a set P C N of density zero such that
lim p(ANT™"B) = p(A)u(B);

n—o0, ng¢ P

(iii) T x T is ergodic on the Cartesian square of (X, B, u);

(iv) For any ergodic probability measure preserving system (Y, D, v, S) the
transformation T x S is ergodic on X X Y;

(v) If f is a measurable function such that for some A € C, Urf = Af
a.e., then f = const a.e.;

(vi) For f € L*(X, B, ) with [ f = 0 consider the representation of the
positive definite sequence (UXf, f),n € Z, as a Fourier transform of a measure
v onT:

(UL ) = /e%mwdu, nez
T

(this representation is guaranteed by Herglotz theorem, see [He]). Then v has
no atoms.

(vii) If for some f € L*(X, B, u) the set {ULf, n € Z} is totally bounded,
then f is a constant a.e.;

(viii) Weakly independent sets are dense in B. (A set A € B is called
weakly independent if there exists a sequence ny < ng < --- such that the
sets T"™A, 1 =1,2,..., are mutually independent);

(ix) For any A€ B and k € N, k > 2, one has

N-1
- n 2n —kn — k+1
JJ%NXEMAmT ANT™AN---NTA4) = (u(A))

(x) For any k € N, k > 2, any f1, fa, .-, fr € L®°(X, B, 1) and any non-
constant polynomials pr(n),pa(n), ..., pr(n) € Z[n] such that for all i # j,
deg(p; — ) > 0, one has

lim _Zfl (TP ™) fo (TP M) - - - fi (TP /fldﬂl /f2dﬂ2 /fkdﬂk
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in L?-norm.

Remark. Weakly mixing systems (for measure preserving R-actions) were in-
troduced under the name dynamical systems of continuous spectra in [KN].
See also [Hopfl] and [Hopf2]. These papers, as well as Hopf’s book [Hopf3],
already contain (versions of) the conditions (i) through (vii). Condition (viii)
is due to Krengel (see [Kre| for this and other related results). The last two
conditions, while being of interest in their own right, are strongly connected
with combinatorial and number-theoretical applications. In particular, (ix)
plays a crucial role in Furstenberg’s ergodic proof of Szemerédi’s theorem on
arithmetic progressions (see [F3] and [F4]). Similarly, variations on condition
(x) (see [B1]) are needed for proofs of polynomial extensions of Szemerédi’s
theorem (see, for example, [BL], [BM1], [BM2], [L]).

We are moving now to the discussion of weak mixing for general group
actions. For sake of simplicity we shall be dealing with countably infinite
(but not necessarily amenable) groups. We remark however that the results
below can be extended to actions of general locally compact (semi)groups.

One possible approach to weak mixing for general groups is via the the-
ory of invariant means. For example, if the acting group is amenable, one
can replace the condition (i) in Theorem 4.1 by the assertion that the av-
erages of the expressions |u(A NT,B) — u(A)u(B)| taken along any Fglner
sequence converge to zero. If the acting group G is noncommutative, one
has, in addition, to replace conditions (v) and (vi) by the assertion that the
only finite-dimensional subrepresentation of (Uy)gsec (where U, if defined by
(U, f)(z) = f(Tyz) ) on L*(X, B, u) is its restriction to the subspace of con-
stant functions.

H. Dye has shown in [D] that under these modifications the conditions (i),
(iii) and (v) in Theorem 4.1 are equivalent for measure-preserving actions of
general amenable semigroups. By using the Ryll-Nardzewski theorem ([R-N])
which guarantees the existence of unique invariant mean on the space of
weakly almost periodic functions on a group, one can extend the notion of
weak mixing to actions of general locally compact groups. See [BR] for the
details.

We are going now to indicate how to recover and refine some of the main
results in [BR] by using minimal idempotents in SG.

We shall deal first with unitary representations of a group G on a Hilbert
space H and will specialize to the case of measure preserving actions later.
Since we work with countable groups only, we may and will always assume
that the Hilbert spaces we work with are separable. To appreciate the
terminology one should think of Hilbert space H as Li(X,B,u) = {f €
L*(X,B,p) : [fdu = 0}.

Definition 4.2. Let (Uy)sec be a unitary representation of a group G on a
separable Hilbert space H.
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(i) A vector ¢ € M is called compact if the set {Uyp : g € G} is totally
bounded in H.

(ii) The representation (Uy)geq is called weakly mixing if there are no
nonzero compact vectors.

In the following theorem we are going to use expressions of the form
p-limgeq Ugp. Since the unit ball in H is a compact metrizable space with
respect to the weak topology, these expressions have a well defined meaning.
We remark also that if p- limyeq Uy = ¢ weakly (which will be the case when
¢ is a compact vector and p a minimal idempotent), then one actually has
p-limgeq Ugp = ¢ strongly. (The verification of this easy fact is left to the
reader).

Theorem 4.3. Let (Uy)gec be a unitary representation of a group G on a
Hilbert space H. For any ¢ € H the following conditions are equivalent:
(i) There erists a minimal idempotent p € BG such that p-limgeq Uy = ¢;
(ii) ¢ is a compact vector;
(iii) For any idempotent p € BG one has p-limyeq Ugp = .

Proof. (i) = (ii). Let ¢ > 0 and consider the set
I'={geG:||Up—¢l <e/2} €p.
It follows that for any g1, g2 € I' one has
||U91<P - UgZ(P” <e.
This implies that for any g € I'"'T" one has

|Ugp — ¢ <e.

By Exercise 7 (iii), the set I ™'T" is syndetic. This means that a union of
finitely many shifts of I ~'T" gives G and, hence, a union of finitely many balls
of radius € cover the set {U;p}gseq, which, in its turn, means that ¢ is a
compact vector.

(il)= (iii) If ¢ is a compact vector, the group G acts on compact space
X = {Uggo}gec by isometries Uy, g € G, and hence distally. By utilizing
the same argument as in the proof of Proposition 3.2 we see that for any
idempotent p € G one has to have p-limgeq Uy = ¢. Since the implication
(iii) = (i) is trivial, this concludes the proof of Theorem 4.3. O

Theorem 4.4. Let (Uy)gec be a unitary representation of a group G on a
Hilbert space H. The following conditions are equivalent:
(i) (Uy)geq is weakly mizing;
(ii) For any minimal idempotent p € BG and any ¢ € H one has
p- liIngEG’ Ug(p = 0;
(iii) For any € > 0 and 1, 92 € H the set {g: |(Ugp1, p2)| < e} is C*;
(iv) There exists a minimal idempotent p € BG such that for any ¢ € H
one has p-limgeq Ugp = 0.
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Proof. (i) = (ii) If for some minimal p € G and ¢ € H one has p-limge Ugp =
¥ # 0, then (by Proposition 3.2) one has p-limyeq Uyep = 1. It follows now
from Theorem 4.3 that 1 is a nontrivial compact vector, which contradicts
(i).

(ii) = (iii) The equivalence of these two statements follows immediately
from the fact that a set £ C G is C* if and only if F is a member of every
minimal idempotent p € G (see Remark after Corollary 2.16).

(iii) = (iv) Trivial.

(iv) = (i) If (Uy)gec is not weakly mixing, then there exists a non-zero
compact vector ¢ € H. But then, by Theorem 4.3, one has p-limycq Ugp = o,
which contradicts (iv). We are done. O

Exercise 21. Show that each of the following properties of a unitary repre-
sentation (Uy)geq on a Hilbert space H is equivalent to weak mixing.

(i) For any ¢ > 0, ¢1,92 € H the set E = {g : |(Uyp1, p2)| < €} has
the following property: for any n € N and any g1, g2, ..., 9n € G, (-, G:E is
syndetic;

(i) For any € > 0,n € N, and ¢, ..., ¢, € H, there exists g € G such that
[(Ugpi, i) <efori=1,..m

(iii) For any unitary representation (V;)4ec of G on a Hilbert space IC, the
tensor product representation (U, ® Vj)sec on H ® K is weakly mixing.

Theorem 4.5. Given a unitary representation (Uy)gec of a group G on a
Hilbert space H, let

He={f€H: fis compact with respect to (Uy)gei}-

Then the restriction of (U,)sec to the invariant space Hym = HE is weakly
mizing.

Proof. Let ¢ € H, ¢ L H., and let p € SG be a minimal idempotent.
Since H, is an invariant subspace, the vector 1 = p-limgeq Uy is in Hyyp,. If
Y # 0, then since ¢ = p-limgeq Uy, 1 is a non-zero compact vector, which
contradicts the fact that ¢ € H}. We are done. 0

Corollary 4.6. Let p € G be a minimal idempotent and for ¢ € H, let
Py = p-limycq Ugp. Then P is an orthogonal projection onto H..

We shall specialize now to the case of measure-preserving actions. Let
us call a measure-preserving action (Ty),ecc on a probability space (X, B, u)
weakly mixing if the unitary action of G defined on L?(X, B, u) by (U, f)(z) =
f(T,z) is weakly mixing on the space Li(X,B,u) = {f € L*(X,B,u) :
Jfdp = 0}.

The following result is an immediate corollary of Theorem 4.4(i) and is of
interest even for Z-actions.
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Theorem 4.7. Let (Ty)4ec be a weakly mizing measure preserving action on
a probability space (X, B, u). Then for any A, B € B and any € > 0, the set

{9€G: [WANTyB) — p(A)u(B)| <&}
15 a C*-set.

The following theorem should be juxtaposed with the polynomial result
formulated above as condition (x) in Theorem 4.1.

Theorem 4.8. Assume that (X,B,u,T) is a weakly mizing system. For
any k € N, fo, f1, fa, s o € L®(X, B, 1), any non-constant polynomials
p1(n),p2(n), ..., pe(n) € Z[n] such that for all i # j, deg(p; — p;) > 0 and for
any minimal idempotent p € BN, one has

p-lim / fol@) (TP D) - - fo (TP ) dps = / fodu / fdp - / fedp.

The proof of Theorem 4.8 is too long to give here. However, it should
be noted, that the proof has essentially the same structure as the proof of
the parallel Cesaro version given in [B1]. The main and, practically, the only
distinction with the proof in [B1] is the need to replace the Cesaro van der
Corput trick utilized in [B1] by the following useful fact the proof of which is
left to the reader.

Proposition 4.9. Assume that (z,)nen is a bounded sequence in a Hilbert
space H. Let p € BN be an idempotent. If p-limpen p-limpyen{Znin, Tn) =0
then p-lim,en z, = 0 weakly.

The following proposition is an immediate corollary of Theorem 4.8.

Theorem 4.10. If (X, B, u, T) is weakly mizing system, then for any k € N,
any sets Ay, A1, ..., Ax € B, any non-constant polynomials py(n), p2(n), ..., pr(n)
€ Z[n], such that for all i # j, deg(p; — p;) > 0, and any £ > 0, the set

{n: (Ao NTP ™A N N TP ALY — pu(Ag)u(Ay)...i(A)| < €}
1s a C* set.

We shall conclude this section by proving a refinement of the so called
Khintchine’s recurrence theorem under the assumption that our system is
ergodic. Khintchine’s theorem (proved in [Kh] for measure preserving R-
actions) states that for any measure preserving system (X, B, u, T), any A € B,
and any € > 0, the set £ = {n: p(ANT "™A) > (u(A))*> — &} is syndetic.
As a matter of fact, it is quite easy to show that the set F is always an IP*
set and, moreover, this result holds for general semigroup actions. (See [B2],
section 5 for details). One would like to extend Khintchine’s theorem to sets
of the form ANT™"B. It is clear, however, that any such result can hold
only under the additional assumption of ergodicity. We have the following
theorem which, for simplicity, will be formulated and proved for Z-actions.
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Theorem 4.11. Assume that (X, B, u, T) is an ergodic, invertible, probabili-
ty measure preserving system. Then for any ¢ > 0 and any A, B € B the
set

E={neZ: w(ANT"B) > u(A)u(B) — ¢}

s *
is a C7 set.

Proof. We are going to utilize the splitting L?(X, B, u) = H. & Hum (cf.
Theorem 4.5 above). Let 14 = f = f1 + fo, 1 = g = g1 + g2, where fi, ¢
belong to the space of compact vectors H, and fy, go € H = Hoym- Note that
since the constants belong to the space H., one has [ fidy = p(A), [gidp =
u(B). By ergodicity of T one has

N—-1
1
D /fl(T”x)gl(x)du o /fldu /gldu = u(A)u(B)
n=0
as N — oo. It follows that for any € > 0 one can find ny such that

/ £1(T™) g1 (2)dps > p(A)u(B) — .

Let p € SN be a minimal idempotent. Using the fact that H. and H,,, are
orthogonal spaces, invariant with respect to the unitary operator U defined

by (Uf)(z) = f(Tx), we have:

p-lim u(T™ANT"B) = p- lierg/f(T"Ox)g(T"x)d,u

neN
=p- }lig% /fl (T™x)g,(T"z)du + p- }lierg /f2 (T™z)go(T"x)du

— [ @D @) > w(A)u(B) - .
(We also used the fact that p-lim,ey g1 (7"x) = g1(z)). It follows that
E={n: p(T™ANT"B) > u(A)u(B) — e} € p.

Since p was an arbitrary minimal idempotent, F is a C* set and hence the set
{n: p(ANT"B) > p(A)u(B) — e} is C%. We are done. O

5. SOME CONCLUDING REMARKS

We started this essay with a question: “What is common between the
invertibility of distal maps, partition regularity of the diophantine equation
x —y = z2, and the notion of mild mixing”? It was claimed in the Intro-
duction that the answer is: idempotent ultrafilters; the purpose of this short
concluding section is to convince the reader that this is indeed so.

As for the relevance of idempotents to the invertibility of distal maps, it
is apparent from Proposition 3.2 and Exercise 17 above. So it remains to
explain the connection of idempotent ultrafilters to the notion of mild mixing
and to partition regularity of the equation z — y = 22.
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The notion of mild mixing, which lies between weak and strong mixing,
was introduced by Walters in 1972 ([Wal]) and rediscovered by Furstenberg
and Weiss in 1978 ([FW1]). Not unlike the weak mixing, mild mixing admits
many equivalent, yet diverse, formulations and plays a crucial role in ergodic
proofs of some strong combinatorial results. (See, for instance, [FK2] and
[BM2].) The following proposition, which we do not prove here, lists some in-
teresting equivalent conditions, each of which may be taken for a definition of
mild mixing. For sake of simplicity, we restrict ourself to measure preserving
Z-actions, but it should be mentioned that the notion of mild mixing makes
perfect sense for unitary actions of locally compact groups and is of impor-
tance in the study of non-singular (i.e. not necessarily measure-preserving)
actions as well. (See, for example, [ScW], [Sc] and [Wa2| for more informa-
tion.) The connection of mild mixing to idempotent ultrafilters is perfectly
clear from the items (iv) and (v) below.

Theorem 5.1. Let T be an invertible measure-preserving transformation of
a probability measure space (X, B, u). Let Ur denote the operator defined on
measurable functions by (Ur)f(x) = f(Tz). The following conditions are
equivalent:

(i) For every A € B with 0 < u(A) < 1, one has

l|11‘n inf y(AAT"A) > 0.
n|—o0

(ii) For any ergodic measure preserving system (Y,D,v,S), the transfor-
mation T x S is ergodic on X x Y. (Note: it is not assumed that v(Y') is
finite.)

(iii) There are no non-constant rigid functions in L*(X, B, u). (A function
[ € L*(X, B, i) is called rigid, if for some sequence (ny)ken one has UrkE f — f
in L?.)

(iv) For any idempotent p € SN and any f € L*(X, B, 1) one has

p—}ligl\I Urf = /fd,u (weakly).

(v) For any k € N, any fo, f1,---, fxr € L=(X, B, u) and any non-constant
polynomials py(n),p2(n),...,pr(n) € Zln], such that for all i # j, deg(p; —
p;) > 0, and any idempotent p € PN, one has

potim [ )£ (7 Pa) ot Oadn = [ o [ .. [ edn

Finally, we shall explain briefly how one proves that for any finite partition
of N there exist z,y, z in the same cell of partition, such that z —y = 22. The
reader will find the missing details and more discussion in [B2] and [B3]. The
proof hinges in the following fact.
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Proposition 5.2. (Cf. [B2], Propositions 3.11 and 3.12; see also [BFM])
For any probability measure preserving system (X,B,u,T), any A € B and
any idempotent p € SN one has p-limyen (AN T”2A) > u?(A).

It follows (via Furstenberg’s correspondence principle, see, for example,
[F4], p.77, or [B3], Theorems 6.4.4 and 6.4.7), that for any set of positive upper
density E C N and any IP set I, there exists z € I’ with d*(EN(E —2?)) > 0.

This, in its turn, immediately implies that, for some z,y € E and z € I', one

has z — y = 2.

Consider now an arbitrary finite partition N = |J_, C;. Reindexing if
necessary, we may assume that those C; which have positive upper Banach
density have indices 1,2,...,s, where s < r. Let U = |J;_; C;. It is not
hard to see that U contains an IP set (this follows from the almost obvious
fact that U has to contain arbitrarily long blocks of consecutive integers). It
follows now from Hindman’s theorem that there exist 79, 1 < 79 < s, and an
IP set I' such that I' C Cj,. It follows now from the remarks above that for
some x,y € C;, and z € T one has z — y = z°. We are done.
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